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SECTION I
INTRODUCTION

A. NEED FOR QUANTUM DEVICES
Downscaling of transistor-based IC minimum geometries will eventually be brought to an

end by a combination of problems related to devices, interconnections, noise, and reliability. 1
The resulting saturation of circuit densities almost certainly implies a saturation of the historical
exponentially downward trend in cost and volume per bit or function, which has been a primary
driving force for the increasing pervasiveness of electronics in DoD systems. Scaling has also
provided exponential improvements in device speed and power dissipation, which has led to
substantial enhancement of system performance. Because the introduction of sophisticated
electronics into these systems has significantly improved their capabilities, it is appropriate to
determine if there is an alternative scenario that significantly prolongs exponential trends in cost
and performance.

Estimates based on abstract physical device switching models that are independent of
specific device technologies indicate it would be theoretically possible to achieve several orders
of magnitude improvement in downscaling of device powers in devices with minimum geom-
etries of a few hundred angstroms if we could find an appropriate nonconventional transistor
device technology. The key to this search is to use electronic phenomena that are characterized
by dimensions much smaller than the depletion layer widths and diffusion lengths that provide
the basis for conventional transistor function.

A step can be taken in this direction by employing heterojunctions rather than p-n junc-
tions to introduce potential barriers for carrier confinement. The advent of MBE and similar
technologies permits us to fabricate semiconductor heterostructures with features on the scale of
nanometers. This allows us to explore novel physical phenomena enabled by nanoscale
heterostructures that can lead to truly revolutionary device mechanisms. Because semiconductor
structures having dimensions comparable to the Bloch wavelength of electrons can be fabricated,
the obvious place to look for such phenomena is in quantum-mechanical effects.

B. TUNNELING AS GENERIC QUANTUM EFFECT
The seminal work of Esaki and Tsu,2 proposing the first artificial semiconductor

superlattice, was instrumental in motivating researchers to bandgap engineer semiconductor
systems. These authors proposed that such structures would exhibit negative differential conduc-
tivity because of the creation of artificial minibands and minigaps. The resonant tunneling diode
was realized four years later (1974) by Chang, Esaki, and Tsu. 3 Initial observations were of weak
structure in current-voltage characteristics because of resonant tunneling through a single quan-
tum well encased by tunnel barriers; in essence, a single component of the superlattice. More
recent work by Sollner et al.4 revived interest in these devices when peak-to-valley current ratios
as high as 6 were observed at 25 K with high-frequency current response (exceeding 2.5 THz).

As an effect, quantum-mechanical tunneling becomes important when the thickness of
the potential barrier is on the order of the electron wavelength. This effect provides an alternative
means by which charge transport in electron devices can be controlled. In the vast majority of
semiconductor switching devices, thermionic or diffusive current transport is controlled by



modulating the potential between device input and output. An alternative method for switching
in semiconductor devices is by control of resonant tunneling transmission resonances using
tunneling heterostructures.

Research at Texas Instruments (TI) and elsewhere on tunneling devices has been intense
over the past years with the most notable achievements being the demonstrations of quantum
dots, 5 quantum-well base resonant tunneling transistors,6 ,7 and the demonstration of resonant
tunneling transistors operating at room temperature with both dc and microwave gain. 8

C. LATERAL TUNNELING DEVICES

Lateral resonant tunneling devices were first proposed by Bate9 and Sakaki.10 Interest in
lateral resonant tunneling structures stems from their unique capability for external control of the
tunnel barrier height and for their longer elastic and inelastic scattering times compared to
vertical resonant tunneling devices, since transport occurs in the plane of a high-mobility two-
dimensional electron gas.

Until recently, the ability to create structures having dimensions comparable to the Bloch
wavelength of electrons has been restricted to the vertical, epitaxial-growth direction. However,

recent advances in nanolithography have allowed researchers to define lateral dimensions com-
parable to the vertical dimensions mentioned previously. Lateral confinement greatly extends our
ability to control electron energy levels in semiconductor devices. TI has been a leader in the
dcvelopment of quantum devices using lateral, as well as vertical, confinement of carriers. The
quantum-dot resonant tunneling diode, in which resonant tunneling is controlled by a discrete set
of energy levels in a laterally confined quantum well, was first fabricated and electrically charac-
eiized at TI. 5 We note that conventional RTDs, without the additional lateral confinement of

41lttum-dot diodes (QDD), operate by reducing the density of states of a tunneling carrier from
three dimensions in the emitter and collector to two dimensions in the quantum well. or 3-2-3.
lhlwcver, the QDD with lateral confinement achieves much sharper NDR characteristics by
reducing the density of states of a tunneling carrier to 1-0-1.

lDiring this contract, we extended our ability to use lateral dimensions in the control ot
arrIrA transport at nanometer-length scales through development of a lateral resonant tunneling

trinsistor (LRTT). Figure 1 shows such a structure. In this embodiment, electron-beam lithogra-
phy is used to produce gates on top of a GaAs/A1GaAs modulation-doped two-dimensional
electron gas (2DEG). While such structures have been fabricated previously in the AIGaAs/
GaAs heterojunction system,I in this work we use the improvements obtained in the InAlAs/
InGaAs 2DEG. The energy band profile from source to drain forms a double-barrier/single
quantum-well structure with lateral quantum-well states fonmed between the bariiers. Applying a
monotonically increasing source/drain bias brings the lateral states through energetic alignment
with tie source states with a resultant negative differential resistance (NDR).

Quantum point contact test structures were also developed during this contract. Quantum
point contacts' 1 can provide for additional density-of-states reduction in lateral tunneling catri-
CN., which could have novel device applications. Here, one expects, because of two closely
separated gates, that conduction in such "contacts" will occur in subbands. As the contact width
i,, electrostatically decreased (increased), a subband channel is removed (added) with a corre-
lpmoling decrease (increase) in conductance. The key point is that the lateral conductance is

quantized.

2



Source -,20 nm -20 nm Drain

i/'/  I71 F71
(a) / wInAIAs

/'/ / / InGaAs //

/ -/ / Z 2DEG V /L

Source Drain

(b) 7 -

Gate

(C)
E F 7 /-/ 7- /--//

Source Drain

04249

Figure 1
A Lateral Resonant Tunneling Diode. (a) Vertical Physical Structure; E-Beam

Written Gates are Formed on Top of a InGaAs/InAlAs Modulation-Doped 2DEG. (b) Top View
of The Lateral Resonant Tunneling Transistor. (c) Energy Band Profile From Source to Drain (VIM =0
of the Lateral Resonant Tunneling Potential. The Gate Forms a Double-Barrier/Single Quantum-Well

Structure, With Lateral Quantum-Well States Formed Between the Barriers.
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In Section UI. we describe modeling activities undertaken during this contract and also the
relevant design criteria for the LRTr. In Section 111. we review the essential elements of the
liaxiolabi ation. and Uin Section IV, we describe the progress on the LRT7s. quantum-point
contact structures, and) a parallel effort to understand the transition from superlattice miniband to
LoU[pld%%ell structures. 'We describe the first demonstration of a lateral resonant tunneling
trailsistol. tonned using depletion tunniel barrier, which exhibits NDR and negative
fraiiscoridUCtitlice The SUperlattice miniband de% ices were realized using verfical tunnel ine
l1ieeOstructUres. bUt hia~e application to both %ertical and lateral devices OUr suinuar\ and

conicluslin are i Section V.



SECTION II
QUANTUM TRANSPORT THEORY AND DEVICE DESIGN

A. BOUNDARY CONDITIONS FOR OPEN QUANTUM SYSTEMS

The worldwide theoretical effort to describe the behavior of tunneling devices is frag-
mented into a number of different approaches, each of which focuses on a particular aspect of the
problem. The most popular approach invokes the formal theory of scattering to construct
wavefunctions that asymptotically approach traveling waves. 13 This is a good way to evaluate
steady-state behavior of a system in which transport is purely ballistic, but it is not adapted to
address the problems of either transient behavior or dissipative transport. The means by which
these issues are addressed, relating the resonance width to the characteristic time or adding a
term to the resonance width to approximate inelastic scattering, are clearly inadequate.

An approach that addresses the significant problems of tunneling devices is a quantum
kinetic transport theory developed during the course of this contract. In this approach, the mixed
state of a quantum system is represented by the Wigner distribution function or an equivalent
density matrix. The time evolution of the Wigner function is described by a quantum kinetic
equation that incorporates the coupling of the device to its contacts and that can include realistic
collision terms. This study culminated in the publication of "Boundary Conditions for Open
Quantum Systems Far From Equilibrium," in Reviews of Modern Physics14 and is included as
Appendix I.

B. TWO-DIMENSIONAL ENERGY BAND COMPUTATIONS FOR LATERAL
HETEROSTRUCTURE DEVICE DESIGN

The second theoretical task of this contract of more direct concern to the experimental
program was to provide modeling tools that relate the structural design of the device to its elec-
trical characteristics. At the inception of this work, there were modeling codes in place for the
self-consistent band-edge profile for vertical RTDs in which the current flow is parallel to the
growth direction of the epitaxial layers. For such devices, a one-dimensional calculation is
sufficient, since the device is practically uniform in the remaining two dimensions. The focus of
this program, however, was to develop lateral quantum-device technologies in which current
flow is perpendicular to the growth direction and parallel to the heterointerfaces that form the
2DEG. Hence, to accommodate the extra, lateral dimension, a two-dimensional simulation
capability was required to guide the development of LRTTs.

We. therefore, developed a general two-dimensional device simulation code, NANO2D.
that obtains the self-consistent potential energy surface defined by the conduction band minimum
for a wide class of two-dimensional III-V semiconductor heterostructure devices. Using a finite-
temperature Thomas-Fermi approximation for the carrier density, the solution to a self-consistent
two-dimensional nonlinear Poisson equation is obtained for specified contact voltages. This
approach is also known as a "zero-current" approximation in device literature. We have demon-
strated that the zero-current approximation works well in lateral nanostructure devices.15-18 The
key idea is that the tunnel barriers, in essence, separate a device into regions in which an ap-
proximately equilibrium electron distribution is established, and the Thomas-Fermi expression
for the carrier density function is the local thermodynamic equilibrium approximation. By having
a picture of the two-dimensional potential energy surface, we can accurately predict the quantum
energy levels that control current flow. By "two-dimensional" we mean that the user can specify,
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in addition to an arbitrary sequence of epitaxial layers in the vertical direction, an arbitrary lateral
variation of material composition and doping, such as might be achieved by regrowth or implant
techniques. In addition, the user can specify the lateral bias across ohmic source and drain con-
tacts, as well as voltages applied to a back ohmi- contact, and to one or more independently
contacted top Schottky gates. NANO2D then generates a three-dimensional graphical image of
the conduction band minimum. Included as Appendix II is the documentation for using
NANO2D.

We illustrate the LRTT device using NANO2D in Figure 2. A particular InGaAs/InAlAs
heterostructure, listed in Table I and described further in Section IV, is chosen to illustrate the
device model. Considering Figure 2, the surface of the device is at z = 100 run and the 2DEG at
the hlAlAs/InGaAs interface is at z = 58 nm. The device is contacted as in a conventional modu-
lation-doped field-effect transistor; however, in this device the potential of the 2DEG channel is
modulated by two closely spaced and narrow gates. This modulation is apparent in Figure 2
looking along the z = 58-nm plane. In this device, the gates are approximately 60-rn wide and

,0.

00

Figure 2
Two-Dimensional Energy Band Diagram for an InO.5 2GaO.4 7As/In0. 53GaO.47As Lateral
Resonant Tunneling Transistor Under Zero Lateral Bias, Zero Substrate Bias, and I -V

Applied to Gate Electrodes. Parameters are Listed in Table 1.

6



separated by 60 nmn. These dimensions are of the same order as the Fermi wavelength and intro-
duce size quantization effects into the device characteristics, as will be shown in Section IV. The
lower InAlAs buffer layer is inserted to reduce parasitic parallel conduction, which can be
significant in InGaAs.

Table 1. Material and Device Structure Used in the Numerical Simulations of Wafer R5023.

Thickness (nm) Composition Doping (cm- 3)

8 lno.53Gao. 47 As 1 x 1018

30 Ino.52 Al0 .4 8As 1 x 1018

5 In0.52 A1o.4 8As

30 In0.5 3Ga0 .47 As

600 In 0 .52 A10 .4 8As

Substrate InP semi-insulating

Lateral gate length 60 nm
Gate spacing 60 nm

Fermi-level pinning 0.2 eV

Gate surface potential 1.0 eV

A more conventional one-dimensional view of the epitaxial structure, from the center of
the gates extending in the z-direction from the surface toward the substrate, is shown in Figure 3.
Clearly, for this material design, surface layers are depleted and the only conduction path below
the Fermi-level is along the 2DEG. Finally, the energy band profile for the device in the plane of
the 2DEG shows the two depletion barriers induced by the surface gate contacts (Figure 4). Note
that the potential well formed between the barriers is approximately the harmonic oscillator
potential, for energies less than the barrier height.

With source and drain connections to either end of the 2DEG channel, electrons traveling
from source to drain encounter two depletion tunnel barriers analogous to the heterojunction
double barriers obtained in vertical RTDs. Unlike vertical devices, tunneling occurs from high-
mobility 2-D electrons, through 1-D confined well states, to 2-D drain states. Also, unlike the
vertical RTD, tunnel barrier heights are field-controllable, introducing an additional degree of
freedom to current-voltage spectroscopy.

7



0.5

0.4-

>' 0.3-

0.2-

0.1

0.0-
I I I , I , I I i i i i , i-

0 20 40 60 80 100

z (nm)

Figure 3
Computed Energy Band Profile in the Growth Direction for the

InAIAs/InGaAs 2DEG Device of Figure 2

0.00 --------------

w -0.05

-0.10

0 100 200 300 400

x(nm)

Figure 4
Computed Energy Band Profile Along the 2DEG at a Position 5 nm From the

InAIAs/InGaAs Near the Wave-Function Peak for the Same Device Described in Figure 2
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SECTION III
NANOFABRICATION

A. LAYOUT

We fabricated all three devices, with the same general process, on a single die that was
1.4 mn by 1.1 mn. A mask set, shown in Figure 5, was designed that contained the following
five levels: alignment marks, mesa, ohmic metal, gate metal, and pads. The alignment level was
defined in metal and contained both optical and e-beam alignment marks. The devices were
designed so that the alignment accuracy required for the optical lithography steps was very easily
met while we took advantage of the high resolution and excellent overlay accuracy of our Philips
e-beam lithography tool.

The mesa level is an e-beam exposed level. Although the required resolution of 0.7 ni is
not out of the question for optical lithography, the alignment accuracy called for is. The ohmic
metal level is exposed with optical lithography.

The gate level is formed with a combination of e-beam and optical lithography. The
minimum feature for the QPC and spectrometer devices is 0.1 pm, while the lateral tunneling
device requires sub-0. I-pm lines. The optical portion of the gate metal mask shorts all of the
bondpads to separate gate electrodes together. This is to avoid damage caused by even small
electrostatic charges that the device might be subjected to. Once the device was packaged and
bonded, the metal lines shorting the pads together are scribed and shorts are removed. There is
also an optional optical mask pattern for vias through a dielectric passivating layer and/or adding
additional metal to the bondpad area.

Figure 5
Scanning Electron Micrograph of Completed Devices

Produced by the Mask Set Developed for This Program

9



It. PROCESS

P'ostepitaxial fabrication begins with definition of tile alignment mark pattern by optical
lithogaphy, whiere pattern transfer by vacuum evaporation and lift-off yields a metal pattern.
Nitetallization was typically Cr or Ti, followed by approximately 200 im of Au.

Elither the mesa or ohmric levels could be formed next. There are advantages to either
,1pp11oach. Pattern ing, the ohimic metal first alows the use of an, electrical measurement to deter-
tine thle effectiveness of the mesa etch in isolating the 2DEG. This ability is desirable when one
%Nwihes to tise thle inuiinum depth etch for isolation so that step coverage problems are redluced.

liowevr metl ch mlasks somet tine., lead to anomalously high etch rates adjacent to the mnetal.
This cairiemtilt lin undercutting the mesa area, disconnecting it from its ohmnic contacts. Although
both processes were tried, we more typically patterned and etched the mesa areas before ohmlic
n tet all iat ionl.

Thie mnesa pattern called for a negative e-heamn resist. We experimented with both Shipley
SAL- 00I and CMS-EXR. For our particular processing needs, we found the CMS-EXR to be
smrperior. Using aI dose of 70-pC/cm2 with a 50-keV beam produced excellent pattern fidelity Oil
both an ;t\ ullP Substrates. After a postdevelopnent hake, samnples (both GaAs and lnGaAs)
were etched w\,it sulfuric acid. hydrogen peroxide, anid water mixtures in the ratio 1:8:160. In
ouir epitaxial structures, thle 2DEG was relatively close to the surface so that we could etch to a
dlepth that ensured Isolation wvithout experiencing step coverage problems.

Ncrgativc c-k ail res;ist is difficult to remove by any other method than 02 plasmas. We
h(I 1 g sollw concetrn that thc relatively long plasmia etching timies required to remove this

!rc' 1111 ' gh Ive deleterious effect oin 2DEG mobility. To deterniine this, van (der Pauw/Hall-
cffcct %Nlic\'er sltb.eCted to 01 plasmla etch 'onlditions for 30 minutes. We dletected no

si11ticilit (lee raldation in mobility of these samiples after plasmia ashing. For GaAs samlples.
W~mre:n tll 7:t ~ncolvo sted of Auje/N i/At metallurgy, followed by a furnace anneal at 430V(

ii 3 imi~uitcs, ln( aAs samples received Cr/Aui or Ti'/Pt/Aui ohmilc metallizations and were
;lohvcd 'sul 1,,-r v. In) both cases, a simple optical lithography step, followed by lift-off, accomn-

. i ncrio transf1er.

h) repiot lce thle designed gate pattrni fa iitiu1y. a fairly wide parameter space of expo-
III' olIon" 11:d it) he explored on out ce-beamil. 'lhe QPC and spectrometer gate patterns were

PI J '1 11h til I( 50 n-diamnecc beam. 25-nmn pixels, and a dlose (if 450 p~c/Cl2.
I',I ~iitlvliichacvle( PN'IMA) withl a molecular weight of 95000 was used] as a resist, After

c'~po',im-, samipics were spray (level oped with Nil 13K/ipa 1: 1 for 2 minutes. Vacuum evaporation
1! 1I i o rmcditres wevre ttscdl to torni the nietal gate pi. ern. Figures 6(a) and (b) anid 7(a)
'11 (1 'how thle me:(;;1 and gate pattern dlesign anid SEN's of fabricated QPC and spectrometer

dc' teos. rcsi)'clively.

To foni-i electrostatic tunnel harriers for the lateral resonant tunneling transistor, we
ctiimo\cd a 15-nmii-diamecter beam with 5-11m1 pixel spacing. Because of intraproximity effects.
the wte juted dose is mu11ch higher: 2000 pC/cm2'. Figure 8 is an SEM of the dual-gate structure
pi ,dut i'd I lachi gate Is appioxiniately 60-nmi long with a 60-nmi space between themn.

*'\pas iat nglayer of silicon nitride was plasmia (deposited onl the GaAs samnples and vias
x'erc etche-d through~l to the hondpads. Onl lnGaAs samples. we noticed a reduction in sample

cid WIt,,. WV -upc httl ird ie may affect thle surface potential of lnGaAs. In
sulbst ' c ilt sneswe dhid not (deposit silicon nitride onl InGaAs devices.

10



a) C lose U~p Vjev (if thle Design if \1csa and (G(e Ix t cs
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Figure 7
a('lose tip View of the Design of Niesa and Gate Le% els for Electron Spectromi-ter

.Si iictute. (b) Scanning Electron Micrograph (of Fabricated Electron Spectrometer Structure.
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SECTION IV

CHARACTERIZATION & ANALYSIS

A. LATERAL RESONANT TUNNELING TRANSISTOR

A lateral resonant tunneling field-effect transistor, similar to that described in Section II,
has been previously demonstrated in the A1GaAs/GaAs system by Ismail et al. I1 Ismail showed
clear conductance oscillations associated with resonant tunneling of electrons across the deple-
tion barriers at 4.2 K; however, no NDR was observed. In this section, we describe the first
,bseivation of NDR in a lateral resonant tunneling transistor. The NDR in this InAlAs/lnGaAs

lateral RTD persists to 30 K. Furthermore, we show clear evidence for mode mixing of 2-D and
I -D confined states.

The material structure for this device was described in Section 1. Van der Pauw resistiv-
ity and Hall-effect measurements for the heterostructure, R5023, yield a room-temperature sheet
carrier (lens ity of 1.12 x 1012 cm- 2 with a mobility of 9500 cm 2/Vs. At 77 K, sheet carrier
density is 9.6 x 1011 cm- 2 with a mobility of 49800 cm 2/Vs. The device structure consists of an
0.7-pm-wide mesa with source-to-drain spacing of 20 pm. Dual 60-nm gates, spaced 60-nm apart
overlie the mesa, as shown in Figure 9. For the device described, gates are not connected exter-
nally. Modulation of the 2DEG is obtained by bias applied to the substrate backside, Vs.

These devices exhibit persistent photoconductivity (PPC) when illuminated briefly by a
red light-emitting diode. The PPC is characterized by two time constants at 4.2 K: an initial short
decay constant of about 2 minutes, and a longer decay time exceeding several hours. Measure-
ments described here were made after the short-lived photoconductive decay. No significant
conduction is obtained without prior illumination. Presumably, the PPC effect is similar to that
observed in other InP/InGaAs and InAlAs/InGaAs 2DEG heterostructures. 19.20 This PPC occurs
because of separation of photogenerated electron-hole pairs or donor photo-ionization and charge
separation at the 2DEG heterojunction.

Detailed I-V characteristics of this lateral resonant tunneling device are shown in Figure
10 as a function of substrate bias. As substrate bias is increased, the Fermi-level is raised with
respect to the depletion barriers. Because the barrier shape is quasi-Gaussian, the highest trans-

i11L ssionl probability occurs at the Fermi-energy, where effective barrier thicknesses are thinnest.
Wc observe resonant tunneling as a function of drain-source bias with as many as seven peaks
dliscemable (e.g., V. = 2.5 V, reproduced alone in Figure 11).

Note that the peak separations are nearly equal, as would be expected from a symmetric
harmonic oscillator potential. Using the one-dimensional computed potential profile as in Figure
4, an estimate for expected peak-voltage separations can be obtained from symmetric harnonic
oscillator eigenvalues. For this potential, h-(o is approximately 14 meV, in good agreement with
the value of 17 meV observed in these measurements.

Also in Figure 10, the first two resonant tunneling peaks are observed to successively
dr~appear as substrate bias is increased. The effect of the substrate bias is to raise the Fenmi-
enrgy with respect to the potential barriers. When the quantum-well states are moved below the
quasi-Fermi level, transmission through these states is apparently significantly suppressed be-
cause of their occupancy and coulomb repulsion. The general shift in peak positions with bias is
likely caused by the increase in channel conductance with substrate bias.

13
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Another notable feature in Figure 10 is a slow charging effect in the device with a time
constant less than one minute. In the measurement of Figure 10, the drain source voltage is
stepped from 0 to 0.2 V at one substrate bias, followed by a second sweep of Vds, aid so oil, to
complete a set of five substrate biases (limitation on data set size is given by the HP semiconduc-
tor parameter analyzer used to make these measurements). It is apparent in Figure 10 that, for
substrate biases exceeding 2.7 V, the first measurement in these data sets (indicated by the
(lashed lines) is shifted with respect to the rest of the measurements in the set. This is indicative
of a charging effect associated with the applied biases. Since the effect is not observed until
substrate bias exceeds 2.7 V, it is likely to be associated with trapping in the InAlAs buffer layer
or buffer-layer interfaces. We note that the substrate current is small, even at high applied bias,
i.e., less than 200 pA at V, = 5 V.

Temperature dependence of resonant tunneling is shown in Figure 12. As can be seen,
NDR persists to temperatures as high as 30 K. Evaluation of the I-V characteristic between 1.2
and 4.2 K, and the reason for loss of higher voltage peaks, is not presently understood.

In addition to these measurements at fixed substrate bias, one can also use substrate bias
to modulate the channel at fixed drain/source bias. This is fundamentally different from previ-
ously described measurements, since in the former case (with fixed substrate bias) electrons are
injected from the same subband in the source as the drain/source bias. Under this condition, the
spectroscopy is then indicative of the quantum-well eigenvalues that, in our experimental data,
have approximately equal separation (no strong effect of well-to-drain selection is indicated).
However, under fixed Vds, the 2-D subband occupation in the drain and source are controllable
by the substrate bias. Thus, the 2-D source/drain size quantization is revealed in a rich spectrum
of resonances between source and drain (see Figure 13). Further characterization and analysis of
these results are in progress and will be reported elsewhere. 21

B. FINITE SUPERLATTICES

Recognizing that issues of electron coherence in superlattices are important in under-
standing lateral resonant tunneling-device functions, as a secondary task of this contract we made

a study of electron transport in vertical, epitaxial superlattices, which could then be applied to
lateral structures. This work was published 2 2 and is included as Appendix III.

C. QUANTUM POINT CONTACTS

Measurements on fabricated quantum point contact structures have not, to date, yielded

fully functional devices. The initial three sets of devices received at Yale had problems related to
gate leakage, submicrorneter ohmic contact fonnation, and surface passivation (InGaAs devices

only). Major processing impediments appear now to be solved, as evidenced by the demonstra-
tion of lateral resonant tunneling as described elsewhere in this report. A fourth set of 24 devices
was received at Yale as this report was being completed, and is in the process of being measured

at this writing.

15
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SECTION V
SUMMARY AND CONCLUSIONS

Accomplishments under this contract cover a wide range of activities in an important area
of electron device research. We have developed and brought to publication a foundation work 14

(see Appendix I) on the physics of open quantum systems driven far from equilibrium. A parallel
modeling effort has enabled the computation of two-dimensional self-consistent energy band
diagrams. This code, NANO2D, described in Appendix II, has enabled the successful design and
demonstration of the first lateral resonant tunneling transistors to exhibit both negative differen-
tial conductance and negative transconductance. Negative resistance is demonstrated to persist to
30 K. Previous work in this field has shown conductance modulation at 4.2 K, but no NDR.

We have also observed, by tunneling spectroscopy of finite superlattices, eigenstates of a
superlattice system driven below the Stark localization threshold 22 (see Appendix HI).

Significant inprovements obtained here call for continued work in this field to exanine
the feasibility of room-temperature operation of the lateral resonant tunneling device. It is antici-
pated that such operation is feasible if depletion barriers are replaced by heterojunctions using.
for example, an etch and epitaxial regrowth process.

Directions for further development of the modeling area include the ability to compute
relevant quantized energy levels to make quantitative predictions for the I(V) characteristics.
Since lateral devices lack any simplifying symmetry (such as occurs in cylindrical quantum dots.,
for example), a multi-dimensional Schr6dinger solver would be required in which both the
bound-state energy levels of the 2DEG subbands and the resonant tunneling levels are computed
in the sane calculation. This would permit further understanding of the possible mode mixing
effects that occur in the tunneling transitions from a two- to a one- to a two-dimensional electron
gas.
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APPENDIX I
BOUNDARY CONDITIONS FOR OPEN QUANTUM SYSTEMS

DRIVEN FAR FROM EQUILIBRIUM



Boundary conditions for open quantum systems driven far from equilibrium

William R. Frensle'"

Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas 75265

This is a study of simple kinetic models of open systems, in the sense of systems that can exchange con-

served particles with their environment. The system is assumed to be one dimensional and situated be-
tween two particle reservoirs. Such a system is readily driven far from equilibrium if the chemical poten-

tials of the reservoirs differ appreciably. The openness of the system modifies the spatial boundary condi-
tions on the single-particle Liouville-von Neumann equation, leading to a non-Hermitian Liouville opera-

tor. If the open-system boundary conditions are time reversible, exponentially growing lunphysical) solu-

,tons are introduced into the time dependence of the density matrix. This problem is as oided by applying
time-irreversible boundary conditions to the Wigner distribution function. These boundary conditions
model the external environment as ideal particle reservoirs with properties analogous to those of a black-
body. This time-irreversible model may be numerically evaluated in a discrete approximation and has

been applied to the study of a resonant-tunneling semiconductor diode. The physical and mathematical
properties of the irreversible kinetic model, in both its discrete and its continuum formulations, are exam-
ined in detail. The model demonstrates the distinction in kinetic theory between commutator super-
operators, which may become non-Hermitian to describe irreversible behavior, and anticommutator su-
peroperators, which remain Hermitian and are used to evaluate physical obsersables.
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746 William R. Frensley: Boundary conditions for open quantum systems

physics of such a situation has been the subject of a close Horowitz and Hill, 1980). The "circuits" (such as logical
examination. [The traditional use of the grand canonical gates or analog amplifiers) that perform the intended
ensemble to define the equilibrium state (Tolman, 1938, functions of the system are connected to, and conduct
Sec. 140) contemplates a system coupled to a single parti- current between, the buses. Each bus is an electron
cle reservoir.] There is a large body of work on quantum reservoir, and the performance of the system's power
systems that are coupled to a reservoir so as to permit an supply is judged by how nearly these reservoirs approach
exchange of energy (see, for example, Chester, 1963; the ideal behavior of no change in chemical potential
Louisell, 1973; Haken, 1975; Davies, 1976; Oppenheim, (voltage) as particles are exchanged (current is drawn).
Shuler, and Weiss, 1977; and references therein), or are in The example of electronics points out that the distinc-
purely thermal contact with two or more reservoirs (Le- tion between a closed and an open system depends upon
bowitz, 1959). Most of these analyses are directed more how one chooses to partition the universe into the system
to the problem of damping (as seen in ohmic conduction) of interest and "everything else." (Such a partitioning is
than to openness in the present sense. Much of the work implicit in the analysis of every physical problem.) To
in this area has been motivated by the development of demonstrate this point, let us examine the etymology of
optical technology (Louisell, 1973; Haken, 1975), in the term circuit. As used in the preceding paragraph, cir-
which the present distinction between openness and cuit means "an assemblage of electronic elements"
damping is unnecessary because the particles of interest (Woolf, 1981), which is most often open with respect to
are massless bosons. In a laser, for example, the degrees electron flow. This usage of the term is now much more
of freedom of greatest interest are the normal modes of common among electrical engineers than the original
the radiation field. A single theoretical model, the meaning, "the complete path of an electric current in-
damped harmonic oscillator, is used to describe both the cluding usually the source of electric energy" (Woolf,
loss of energy (photons) to the gain medium within the 1981), which implies a closed system with respect to elec-
cavity and the loss of photons to the output beam (Gor- tron flow. It is no accident that the usage of the word
don, 1967; Scully and Lamb, 1967). The analogous pro- circuit has evolved in this manner. Early in the develop-
cesses in an electronic resistor (an open system in the ment of electrical technology, a useful system [such as
present sense) are the scattering of an electron by a pho- the electromagnetic telegraph (Marland, 1964)] was com-
non within the resistive material and the escape of an posed of at most a few topologically closed "circuits,"
electron from the resistive material into a more highly and the closure of the current path was a central con-
conductive contact. The present work will concentrate cern. As the complexity of electrical systems increased,
upon the consequences of the latter process. The the convention of organizing a system in terms of a
difference between the system of massive fermions and power supply and its buses was developed. This provided
the system of massless bosons is that the fermion system a common segment for all the current paths, and the at-
is constrained by a local continuity equation, whereas the tention of the engineer focused on the remaining, "in-
boson system (within the usual models) is not so con- teresting" segment, that which contained the active de-
strained, vices (and the term circuit came to be applied to such a

segment). However, by focusing on only a segment of the
A. Significance of open systems current path, one had to deal with an open system, rather

than a closed one.
To document the importance of open systems, let us The physics of closed systems is certainly simpler than

consider some examples. Most practical engines (in the that of open systems, because closed systems obey global
sense of machines that convert some form of energy into conservation laws, while open systems, in general, do not.
mechanical work) exchange matter with two or more In the well-established techniques of physical theory one
reservoirs. To cite examples from an earlier technology often encounters artifices, usually in the form of periodic
(avoiding the complications of internal phase transitions boundary conditions, which assure the closure of the
or chemical reactions) we might consider the overshot theoretical model, if not of the system itself. The point of
water wheel (Reynolds, 1983), which operates between the present discussion is that it is frequently necessary to
reservoirs of water at different gravitational potential, or partition a complex system (which might reasonably be
the high-pressure steam engine (Dickinson, 1938), which regarded as closed) into smaller components which,
operates between its boiler and the atmosphere, reser- viewed individually, must be regarded as open. Thus, the
voirs which differ greatly in their pressure and tempera- more applied disciplines of the physical sciences must
ture. Conspicuously absent from a list of economically often deal at some level with the concept of an open sys-
significant engines are systems that operate upon the Car- tem.
not model of a closed system in purely thermal contact There are many established techniques for dealing with
with its reservoirs. open systems in fields such as fluid dynamics, neutron

A technology of more current interest is electronics, transport, and electronics. All these fields are concerned
whose systems are usually arranged so that a "power sup- with the transport of (usually) conserved particles. The
ply" maintains constant voltages (i.e., chemical potentials transport phenomena are described by transport equa-
for electrons) on two or more "buses" (see, for example, tions at a kinetic or hydrodynamic level which are either
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differential or integro-differential equations. Such equa- tion in which the change in chemical potential across the
tions require boundary conditions, and it is in these system is of finite magnitude (because the potential must
boundary conditions that the openness of a system is de- also be periodic). Periodic boundary conditions are thus
scribed. In the computation of the flow around an airfoil, adapted to the requirements of linear-response theory
one must supply "upstream" and "downstream" bound- (Kubo, 1957), but not to those of far-from-equilibrium
ary conditions (Roache, 1976, Chap. III, Sec. C). In elec- problems.
tronics the connection to the external circuit is accom- A fundamental approach that does take cognizance of
plished by some sort of contact. In solid-state electronics the open nature of transporting systems is that advocated
the most frequently used type of contact is the ohmic by Landauer (1957, 1970; also Biittiker et al., 1985).
contact, an interface between a metallic conductor and This approach envisions a system within which dissipa-
(usually) a semiconductor which permits electrons to pass tive processes do not occur, but which is coupled to two
freely. Because the ohmic contact is a critical component or more ideal particle reservoirs. The conductance of
of solid-state technology, most work on such interfaces such a structure is then expressed in terms of the
has been directed toward their fabrication and character- quantum-mechanical transmission coefficients of the sys-
ization (Milnes and Feucht, 1972). The theoretical repre- tem. The ideal reservoirs have properties analogous to
sentation of such contacts by boundary conditions has those of a blackbody: They absorb without reflection any
been a part of the analysis of semiconductor device prob- electrons leaving the system and emit an equilibrium
lems since the beginning of semiconductor technology thermal distribution into the system. We shall see that
(Bardeen, 1949; Shockley, 1949). The current practice of such a picture is indeed the key to constructing a useful
using boundary conditions to model contacts is discussed open-system model. However, let us note that this ap-
in detail by Selberherr (1984, Sec. 5.1). proach does not specify the boundary conditions on a

boundary-value problem. The boundary conditions are
B. Theoretical approaches to open quantum systems actually applied to Schr6dinger's equation and are the

asymptotic conditions upon which the formal theory of
Since the existing theoretical work on open systems scattering is based (see Appendix D). The concept of

consists primarily of the definition of boundary condi- thermal reservoirs is invoked to specify how the %arious
tions on transport equations, it is appropriate to examine wave functions are to be incorporated into a density
various approaches to transport theory to see how they operator for the system, from which observables may be
have dealt with this issue. Tiis examination will center evaluated.
upon electron-transport theory, because we wish to in- The Landauer approach has successfully described a
clude quantum-coherence effects in the theory, and these number of quantum conductance phenomena (Stone and
are much more prominent in systems of electrons than in Szafer, 1988): Aharonov-Bohm oscillations, univcrsal
systems of more massive particles, conductance fluctuations, and quantized cinductance

By far the most common approach to defining the through constrictions (Szafer and Stone, 1989). (ManN
boundary conditions on a transport problem is to circum- recent results in this area can be found in Hinrich.
vent the issue entirely. This is most easily done by re- Bauer, and Kuchar, 1988, and in Reed and Kirk, 1989.)
stricting one's attention to the special case of spatially However, it is important to recognize that these phenom-
uniform systems, so that (at the kinetic level) all spatial ena occur only under a very restricted range of cir-
derivatives disappear, and with them the need to specify cumstances (Webb, 1989): cryogenic temperatures tvpi-
the boundary conditions. Applications of the Boltzmann cally 1 K) and low voltages (typically I meV'). The
equation (as expressed in terms of the usual Euler vari- reason for this is not so much the fragility of quantum-
ables) have most often been restricted to the case of uni- interference effects in themselves, but rather the con-
form driving fields (Dresden, 1961; Conwell, 1967). straints placed upon the phenomena by the requirement
When the Boltzmann equation has been applied to that they be observable in the linear-response regime
nonuniform systems (see, for example, Castagne, 1985; (which is to say, very near to thermal equilibrium). Near
Constant, 1985; Reggiani, 1985; Baranger and Wilkins, equilibrium, only the states near th Fecrmi level contrib-
1987), techniques requiring that the equation be recast in ute to the conductance, but all such states participate.
terms of the Lagrange variables have generally been em- As the temperature or bias voltage is raised, more states

ployed. Boundary conditions for such formulations are participate in the conduction, with slightly different einer-
discussed in Appendix C. Much of the work on quantum gies or wave vectors, and the observable effects are
transport has also assumed uniform fields (see, for exam- "washed out."
pie, Levinson, 1969; Mahan, 1987). In a far-from-equilibrium situation one has the oppor-

The other popular approach is to assume periodic tunity to populate selectively a narrow set of quantum
boundary conditions (Kohn and Luttinger, 1967), which states, leaving nearby states unpopulated. This can lead
assure the Hermiticity of all relevant operators (Yennie, to quantum-interference phenomena which are quantita-
1987). This in effect closes the system, forestalling the tively dominant at or above room temperature. The pro-
possibility of studying any open-system aspects of the totypical example of such a situation is provided by the
problem. It also prevents one from studying any situa- quantum-well resonant-tunneling diode (Chang, Esaki,
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748 William R. Frensley: Boundary conditions for open quantum systems

and Tsu, 1974; Sollner et a/., 1983), which is discussed near the bottom of a parabolic potential well consider-
more extensively in Sec. V. Such devices have demon- ably deeper than that of the first iteration.)
strated peak-to-valley current ratios as high as 30 at 300 The physical processes that work to enforce charge
K (Broekaert, Lee, and Fonstad, 1988; for a tabulation of neutrality are those which work to restore thermal equi-
device results see Mehdi and Haddad, 1989). librium, which is to say, inelastic processes. In the

Given that far-from-equilibrium quantum-interference present case, these are the inelastic scattering events (pri-
effects can be large and are thus important to study, one marily phonon scattering) which dissipate the electrons'
must ask whether such effects can be adequately de- energy and cause electrons in the propagating states
scribed by elementary quantum theory. For the case of entering from the left-hand reservoir to fall into the
tunneling structures the standard elementary theory as- lower-energy notch states. The resulting population in
sumes that the electron states are stationary scattering- the notch states produces the accumulation of negative
state solutions of Schr6dinger's equation (Duke, 1969; charge required to screen the electric field. Thus the true
Tsu and Esaki, 1973; Wolf, 1985). Does this provide an self-consistent potential will depend upon the number of
adequate description of nonequilibrium phenomena? The electrons in the notch states, which in turn will depend
answer is, in general, no, and we shall explore this issue upon the relative rates at which electrons are scattered
below. The elementary tunneling theory does seem to into the notch states and subsequently tunnel out
give good results for the current density, but for other (Wingreen and Wilkins, 1987). Therefore a physically
physical observables, such as the charge distribution, a
more sophisticated approach is required.

To demonstrate the problems one encounters with ele-
mentary quantum-mechanical models in a far-from-
equilibrium situation, let us consider the apparently sim- 0.2
pie problem of finding the self-consistent electrostatic po-
tential in a single-barrier tunneling structure. A semi-
conductor heterostructure is assumed, and the details of
the structure and analysis are given in Appendix A. The
approach that we shall use is first to approximate the
self-consistent potential using the Thomas-Fermi screen-
ing theory. The resulting potential and electron distribu- I -2 -
tion are shown in Fig. I. The Thomas-Fermi potential ,
shows the smooth bending that one would expect in a
system in which the charge densities are several orders of
magnitude less than those in metallic systems. Now we -0.4 "- ,,__ -

use the Thomas-Fermi potential in Schr6dinger's equa-
tion and start an iterative procedure to find the "true"
self-consistent potential. The results of the first iteration -T-F screening
are also shown in Fig. 1, and it is quite clear that we will Ef(E)%(x)j2

not obtain a physically credible result. The charge densi- -
ty obtained from Schr6dinger's equation differs markedly Ionized donors

from the Thomas-Fermi solution on the left-hand ........-.

(upstream) side of the barrier. Where Thomas-Fermi in- 5-
dicates an accumulation of electrons, Schr6dinger's equa-
tion gives a depletion of electrons. The reason for this is 4)
that the tunneling theory assumes that the electron states I
in the potential "notch" on the left-hand side of the bar- 0 , 4 , ,
rier are in equilibrium with the right-hand reservoir, be-
cause iiat is the side from which these wave functions X (nrm)
are incident. The depletion of electron density may be
traced to the requirement of current continuity in the FIG. I. Potential (upper) and charge density (lower) of a semi-
propagating states: As an electron propagates into a re- conductm tunneling heterostructure biased far from equilibri-
gion of decreasing potential, its velocity increases; but to um: solid lines, results of a Thomas-Fermi screening model;
maintain a constant current density, its amplitude must dashed lines, charge density and first iteration of the potential

obtained by solving Schr6dinger's equation in a conventionaltunneling calculation. The tunneling result fails to display an
sity does not produce overall charge neutrality in the accumulation of electrons on the upstream side of the barrier
structure, the solution of Poisson's equation has large because inelastic processes are not included, and as a result the
electric fields at the boundaries, which in turn exacer- self-consistent potential is quite unphysical. The dotted line
bates the problem of charge neutrality. (The final self- shows the distribution of positive charges, and the dot-dashed
consistent result would show the energy barrier lying line shows the chemical potentials.

Rev Mod Phys Vol 62 No 3, July 1990



William R. Frensley: Boundary conditions for open quantum systems 749

reasonable self-consistent potential will not be obtained To demonstrate that a plausible solution to the self-
unless the inelastic processes are included in the analysis. consistent-potential problem can be obtained using kinet-

The usual way to incorporate inelastic processes, to the ic theory, the results of such a calculation are shown in
first order, is to use the Fermi golden rule to evaluate the Fig. 3. The approach described in Secs. IV and V was
transition rates between states. In a more complete used, and inelastic processes (phonon scattering) were in-
description these transition rates actually appear as terms cluded using the Boltzmann collision operator described
in a Pauli master equation (see Kreuzer, 1981, Chap. 10). in Appendix F. When the phonon scattering processes
The Pauli master equation assumes that the electrons oc- are included [Fig. 3(a)], an accumulation layer is formed
cupy only eigenstates of the Hamiltonian, not superposi- in the potential notch. However, the accumulation is not
tions of those eigenstates. In other words, the density sufficient to screen the electric field effectively as it zp-
operator of the system is and remains diagonal in the proaches the boundary. Evidently there are other effects
eigenbasis of the Hamiltonian. In the present case, this that need to be included. One such effect is the resistivity
assumption violates continuity. An example of this is of the contacting layers (outside of the calculation
shown in Fig. 2, which shows two eigenstates of domain). If these layers are ohmic conductors, the distri-
Schr6dinger's equation, one incoming from the left and bution of electrons in them must shift away from its equi-
one confined in the notch (though it is coupled by tunnel- librium value when a current is conducted. When this
ing to a propagating state on the right-hand side of the effect is incorporated into the boundary conditions on the
barrier). An inelastic process described by the Pauli mas- kinetic model, the self-consistent potential shown in Fig.
ter equation will cause probability density to disappear 3(b) is obtained. This is a much more credible result, as
from one state and reappear in the other. Because the
spatial distributions of the two states are different, this
means that the probability distribution must change with
time. But because the states are both eigenstates, their
current densities are uniform. Thus the Pauli master (a) 0.2-. -.1 T .. ,..,.,.
equation violates the continuity equation. This is ex- -
plored more formally in Appendix B. Presumably, in- 0.1 1 0
elastic transitions are more localized processes, involving > ,
superpositions of eigenstates which describe such locali- " 0.0
zation. However, this implies that the off-diagonal ele- --- .

ments of the density operator are non-negligible, and 010 5
theories that comprehend off-diagonal density operators C -
are kinetic theories. 02 -.

11 1 1 i 0

0 20 40 60 80

Position (nm)
0 .2 , t t ' ' '( b ) 0 .2 .. .. .. . 7, -r- -

01 0.1 1.0

-0.2- .,-

0.10 - 10 4 0
0.0 0.0

Q) -).05

G -0.1 C0.t ec

-0.2 -0.2
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~0.05 KPosition (nm)

0.00 20 I .FIG. 3. Calculations of the self-consistent potential of the 11111-0.00 neling heterostructure using a kinetic theory that include., in-

0 20 40 60 80 elastic processes. In (a) the longitudinal-optic and acoustic-

x (nm) phonon scattering processes are included, but the incoming dis-
tribution of electrons is fixed. An accumulation layer is formed

FIG. 2. Typical eigenstates in a tunneling structure: solid line, on the upstream side of the barrier, but the screening of the
a propagating state: dashed line. a state that is confined in the electric field is far from complete. In (b) the incoming distribu-
potential "notch." The spatial distributions of these states are tion of electrons is allowed to shift in response to the electric
quite different, as shown in the lower plot of IV(xpi'. Thus the field at the boundary, to simulate an Ohmic conductor outside
Pauli master-equation description of an inelastic process that the boundary. The screening is more complete, and the result-
couples these states must violate the continuity equation. ing potential is more physically credible.
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the potential varies smoothly through the structure and procedure will be to construct small, spatially discrelized
the electric field approaches a small value at the boun- models and to explore their properties numerically. The
danes. The screening length from the kinetic model is significance of the results must then be argued inductive-
significantly longer than the value indicated by the ly.
Thomas-Fermi calculation of Fig. 1. This might have
been expected from the effects of size quantization in the B. Fundamentals of kinetic models
notch (Ando. Fowler, and Stern, 1982) and also from the
finite rate of inelastic transitions that fill the notch. In the kinetic level of description of a complex system,

Thus the problem of calculating the self-consistent po- the effects of those degrees of freedom that are of less in-
tential in a tunneling structure is about as complicated as terest in a given problem are included implicitly in ob-
it could possibly be, in the sense that the qualitative re- jects such as collision operators or effective interaction
sult depends upon all the processes occurring within the jets c as clsnpe o eectieierctionpotentials. In the example of electronic devices such de-
,ystem. It thus pro,,ides a vivid example of the problems grees of freedom should include electron coordinates out-
one encounters in attempting to apply elementary side the device, but within the external circuit. They also
quantum-mechanical concepts to a far-from-equilibrium include all excitations of the device material apart from
situation. A satisfactory treatment of far-from- the single-electron states ie.g., the phonons). Thus, at
equilibrium phenomena requires an approach at a level of this level, the state of the system is described b. a one-
sophistication at least equal to that of kinetic theory. body density operator or distribution function. In gen-

eral, this can be written as

II. QUANTUM KINETIC THEORY px.x' W u X i ( iX) . 2. 1'

A. Levels of approximation in statistical theory where i labels a complete set of states and the u- are

real-valued probabilities foI the system to be in state i 1.

-A gcnerally accepted approach to the problems of sta- Because we shall be considering open systems in which
tistical physics is to begin with the general theory of the number of particles is not fixed, the usual convention
man,-body dynamics and to proceed b, deducti)e for the normalization of p ( i i) I and Trp= 1 is not
reasoning to a formulation that provides an answer for useful. Instead. we shall adopt a normalization conen-
the problem of interest tsee. for example, Reichl. 10o0. tion such that p.x.x gives the actual particle density in
Flic ,ieps in This deductive chain necessarily involve the units of particles per cm'. for example,. More formally.
introduction of extra assumptions in the form otf suitable p :s the one-body reduced density operator which is
approximations. One may loosely categorize the levels of defined on a single-particle Hilbert space Reichl. 1%0.
approximation in terms of the independent \ariables re- Chap. 7,. The complete density matrix defined on the
quired to specify the state ofa system. The most detailed many-particle Fock space second quantization, may ,till
lev l is the fundamental many-body theor,. which in be normalized to unity. The focus upon a single-particle
principle rcquires a complete set of dynamical variahles description requires that one exercise some care concern-
t 0r each particle. This can be reduced to the kinetic level ing the quantum statistics. For example. if the equilibri-
by restricting one's attention to one- or two-body proper- um densit, operator is obtained by solimg the Bloch
ties (h\ truncating the BBGKY hierarchy of equations, equation. 3p ,3 -Hp. the result will satisfy' Maxwell-
for example *Reichl. 1080. Sec. 7C0]. It may also be Boltzmann statistics. A similar calculation in the Fock
necessary to remove from explicit consideration other space will. of course, satisfy Fermi-Dirac statistics.
d\namrical variables of the complete system, such as pho- For a system described by a simple single-particle
ton or phonon coordinates, when electrons are the parti- Hamiltonian.
ties of interest. Fhe kinetic theory is expressed in terms
of distribution functions defined on a single-particle H 2m X 2.2
phase space. requiring one position and one momentum

variable for each ,patial dimension. In the quantum the time evolution of the density matrix is gien b. the
.a.se. 1i1s goes over to two arguments of tile density, LIOuville-%on Neumann equation:

operator The hvdrodynam:c level of approximation is
,htamined h\ making some assumption about the form of H 3 L p
tle distribution function with respect to momentum, and t[Hp] Lp
integrating over all momenta. Thus the hydrodynarnic - _"
theory. is expressed in terms of densities that are func- - - - , -(iox -i. r"]p

ions t fposition only. 2 -

Flie approach taken in the present work is quite 2.3'
different from the conventional deductive approach. The
ohective is to identify the mathematical properties re- where I is the Liouville superoperator. The simplest ap-
qiired of simple kinetic models of open systems. The proach to modeling the hel,ivior of open syvi -ns is to ap-

-v i" "t Ii Ii v , 1 16l I
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ply the Liouville equation to a finite spatial domain 6¢+)A =-[CA +AC . (2.8)
representing the system of interest and to apply boundary
conditions that model the openness of the system. The If C is Hermitian (ct=c), the Hermiticity of C' and
difficulties and ultimate success of this approach involve (, + follow immediately:
the effect that such boundary conditions have upon the (e-)A JIB )=Tr[(CA -AC)*B]=Tr( A *C*B-C*A 'B)
properties (particularly the eigenvalue spectrum) of the
Liouville superoperator. =Tr(A t CB -CA tB)=Tr(A tCB -,4 tBC)

=Tr[A t (CB -BC)]= ( A II, - B ) ,

C. Linear algebra of superoperators and similarly for , +,. The Hermiticity (or lack thereof)

of the Liouville superoperator is the critical issue in for-
A central issue in the development of a kinetic model mulating a kinetic model of open systems.

for opcn systems is the stability of the resulting time- Of particular importance are the superoperators gen-
dependent solutions, which depends upon the eigenvalue erated by the position operator x and the momentum
spectrum of the Liouville superoperator. Zwanzig (1964) operatorp, =(fz/i)a/x:
has presented an excellent discussion of the properties of
superoperators (or tetradics). However, the present X. 1+-,(x +x) (2.9)
analysis requires a somewhat different group of expres- -(_)=x-x, (2.10)
sions, so the subject will be developed here. The density
operators that represent the state of a statistically mixed ___ (2.11
system themselves form a linear vector space analogous P += 2i ax -x'

to the space of pure quantum states represented by wave

functions. A linear combination of density operators a (.
might be used to describe the results of superposing two - - + (2.12)
pari;iy. polarized beams of particles, for example (using
the p.-SCnt normalization of p). Anything that generates These superoperators obey the following commutation
linear transformations on a density operator [such as the relations:
right-h:nd side of the Liouville equation (2.3)] is a su-
perop,'rtor. In a finite, discrete system with N states, a [ +, +=[X- ,'P, ]0, 2.13)
wave function will be a vector (a singly-indexed object) [\ ) ,,_ -]=[:)(-,'P ] . 2.14)
with N elements, the density operator will be a matrix (a
doub, -iHide xd object) with N: elements, and a super- Thus V, is in some sense conjugate to P, , and I
operator \will be a tetradic (a quadruply-indexed object) bears a similar relationship to P, . Of course C . corn-
with N' elements. The linear algebra of superoperators mutes with C ., for any operator C.
is isomorphic to that of ordinary operators, but to define
concept,, ,uch as Hermiticity or unitarity of superopera- D. Irreversibility
tors, Wc must have a definition for the inner product of
two erdln~iry operators. The simplest definition is Kinetic theory appears to be the simplest level at

..I : ) Tr( A 'B) , (2.4) which one may consistently describe both quantum in-
terference and irreversible phenomena (Prigogine. 1980).

where .-1 and B are operators and the notation ( is in- The only available levels that are simpler, in that the) re-
iroduced to indicatc expressions in the linear space of quire fewer independent variables, are hydrodynamics
operators. It is easily shown that this satisfies the axioms and elementary (single-particle, pure-state) quantum
(Apostol, 1969) defining an inner product on a complex mechanics. Hydrodynamics (as embodied in Ohm's law
vector ,pace. Then a Hermitian superoperator 7 and the drift-diffusion equation in solid-state physics)
satisfies provides no means to describe quantum effects such as

., 1: .11B (/14 AJIB )(2.5) resonance phenomena because it retains no information
on the distribution of particles with respect to energy or

and a unttary superoperator Y1 satisfies momentum. On the other hand, if one attempts to in-
clude irreversible processes within the framework of elc-

U.IUB) A JIB ).(2.6) mentary quantum mechanics, the continuity equation is
Siipcropcrators are usually derived from ordinary most often violated. Irreversible processes will generally

quantum observable operators by forming the commuta- result in the time dependence of some physical obserV-
tor or anticommutator with the operator being acted able showing an exponential decay. The only time depen-
uron. For an operator C let us denote these superopera- dence provided by elementary quantum theory is the
tors e -- ,E' dependence of the wave function. Exponential

decay implies that E must have a negative imaginary
A . --CA-- AC (2.7) part, which means that the electron (for example) cx-
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752 William R. Frensley: Boundary conditions for open quantum systems

ponentially disappears, violating charge conservation. mitian, so . /ih by itself would produce purely imagi-
As we have seen, violations of continuity still occur when nary eigenvalues. The collision operator 0 introduces
the irreversible processes are described by the Fermi the negative real parts of the eigenvalues. Physically, we
golden rule or Pauli master equation (see Appendix B). expect that there should be no eigenvalues with positive
To maintain consistency with the continuity equation, we real parts, because these would correspond to exponen-
must allow off-diagonal elements of the density matrix (in tially growing modes, and the system would not be stable.
the eigenbasis of the Hamiltonian) to develop as the sys- The presence of eigenvalues with negative real parts to-
tem evolves (see Peierls, 1974). Because we do not know gether with the absence of eigenvalues with positive real
a priori which off-diagonal elements are required, we parts implies that the system is time irreversible.

must admit all off-diagonal elements. A theory that de- The study of the fundamental origins of irreversibility
scribes the evolution of the complete (single-particle) den- in physical theory remains an area of active discussion
sity operator, including the off-diagonal elements, is by and debate, more than a century after the question was
definition a kinetic theory. first raised. However, if one's objective is to develop use-

To express this point in another way, we cannot, in ful models of physical systems with many dynamical
general, assume that the particles in an irreversible system variables, rather than to construct a rigorously deductive
occupy the eigenstates of the Hamiltonian. The proper mathematical system, it is clearly most profitable to
basis states for a one-particle description are the eigen- adopt the view that irreversibility is a fundamental law of
states of the density operator, and thus the specification nature. For the present purposes a more precise state-
of the basis set should be a result obtained from a proper ment of this law is that "simple" systems will always
theory, rather than an a priori assumption in the theory. stably approach a steady state. In this context simple
The exception to this situation is the particular case of systems are those which can be regarded as being com-
thermal equilibrium. In this case we know that the den- posed of a single type of particle or single chemical
sity operator is a function of the Hamiltonian (via the species and such that all other types of particle or excita-
Bloch equation, pc e -3H), and if an effective one-particle tion can be represented by thermal reservoirs. [Mul-
Hamiltonian is an adequate description, the particles in ticomponent systems can display exponential growth or
the system will be found in eigenstates of this Hamiltoni- stable oscillation (Prigogine, 1980).] The stability of the
an, if they are in equilibrium, physical system implies that the kinetic superoperator

The usual way to describe the effects of irreversible or that generates the time evolution of the density matrix
dissipative processes at the kinetic level is to add a col- (whether it be of the Liouville, Boltzmann, or some other
lision term (of one form or another) to the Liouville equa- form) cannot possess eigenvalues that would lead to
tion (2.3) to obtain a Boltzmann equation. This is a valid growing exponential solutions. That is, there can be no
procedure so long as the dissipative processes are eigenvalues with a positive real part. This condition will
sufficietitly weak that the motion of the particles can be determine the sort of boundary conditions that can be
viewed as periods of free flight interrupted by collision used to model open systems.
events. Such a term takes its simplest form for interac- Throughout most of the present analysis the collision
tions between the particles of interest (i.e., elections) with terms will be neglected, because we shall see that irrever-
particles that either are spatially fixed (such as impurities sibility enters through the open-system boundary condi-
in solids) or can be modeled as components of a thermal tions. The irreversible open-system model permits a wide
reservoir (such as the phonons). In this case (and within variety of phenomena to be described at least qualitatie-
the Markov assumption) the collision term is a simple ly without invoking a collision term. This is not to saN
linear superoperator expression, and we can write the that irreversible collisions or dissipative interactions
Boltzmann equation as within a system are not significant effects. Indeed, a cen-

tral thrust of traditional transport theory is the derm'a-
ap/at =(L/i )p+ (Cp, (2.15) tion of kinetic descriptions of such phenomena. The

present neglect of the collision term is merely for the sake
where (; is the collision superoperator. (We shall see of simplicity, and it should be borne in mind that such alater what condition (?J must satisfy to preserve the con- term may be readily added to any of the calculations to

tinuity equation.) For two-body collisions the operator is te discussed (see Appendix F).

a more complex object, operating on a two-body density

matrix or (if the Stosszahlansatz is invoked) a product of
one-body density matrices which introduces nonlinearity. Ill. TIME-REVERSIBLE OPEN-SYSTEM MODEL

A characteristic feature of irreversible systems is the

existence of stable stationary states, which can be either To describe the behavior of an open system, we shall
the equilibrium state or a nonequilibrium steady state if consider an approach in which the spatial domain is con-
the system is driven by an external agency. Perturbations sidered to be finite, corresponding to the extent of the
upon such a steady state will, in general, decay. To de- system, and boundary conditions are applied which per-
scribe this decay the Boltzmann superoperator 1 lib+ 0 mit particles to pass into and out of the system. The first
must have eigenvalues with negative real parts. In the model we shall consider employs time-reversible hound-
usually studied case the Liouville superoperator is Her- ary conditions which are pi. ,isible, but which we shall ul-
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timately see to be unphysical (Frensley, 1985). This mod- particular case p obeys the homogeneous boundary con-
el helps to define the conditions that a physically reason- dition
able open-system model must display. a + (3.4)

A. Continuum formulation ax aix 1P boundary=0 .

In other words, the directional derivative ofp in a direc-
To provide the motivation for the first model, let us tion parallel to the principal diagonal is set to zero at the

consider a spatially uniform particle gas of infinite extent, boundaries.
- ac < x < oc, and take the open system to be the finite Is Eq. (3.4) the appropriate boundary condition for a
region 0 <_ x < 1. The thermal equilibrium density matrix general open system? Let us explore some of its conse-
for a uniform gas may be obtained by integrating the quences. Suppose at time t=0 we apply a uniform force
Bloch equation (Fevnman. 1972) field F to tie particl gas. T,, b0 lUtjOii to the

ap,laf= -Hpe. (3.1) equation (2.3) over the infinite domain and with initial
condition (3.2) describes an accelerating gas and is given

The solution pf,, (for free particles in equilibrium) is by

Pfeq(xXX)~ - exp[ -( -X) 2 /2X 2
1 .+fll] , (3.2) iacxx;)pc~~'ep x-'t5Pfe

( ' ' ' ' j  
.viW T Pacc(X,X ,/)--Pfeq(X,X')exp (X -X') (3.5)

where the normalization is such that pfeq(x,x) gives the Now Pace also obeys Eq. (3.4), so it is also the solution to
number of particles per unit length, p is the chemical po- Eq. (2.3) over the finite domain subject to boundary con-
tential, and X I- is a thermal coherence length given by dition (3.4).

;6 - flnm (3.3) A more general consequence of boundary condition
(3.4) is that the particle densities at the boundaries, p(0,0)

N,), if we arbitrarily impose boundaries along the lines and p(l,1), remain constant as the density matrix eolhes
X0, . I, x'= 0, and x'= 1, what boundary conditions with time. To demonstrate this, note that we can factor
"ould p0,q satisfy? Note that the dependence is only the hyperbolic operator in the Liouville equation (2.3) de-
upon (x -x'), so that ap/ax -ap/ax'. Thus in this rived from the kinetic energy terms as

i i a 2  32  _ P i, 3.,
21n )ax 2  

1y' 2m ax ax' ax + - m

'The boundary condition assures that the second factor in tity to transpose the Laplace operator, which lcaxes a
Fq. 3.6) is zero along the boundaries, and along the diag- surface term. The precise expression is
(mal the potential term is zero. Thus ap(0,0)/t=O and

p ./i, dt i. This might be interpreted as the behavior j (H- H*)d x= -tJ js ( 3.7)
of a large reservoir with a fixed particle density (or fixed fil

pressure if the temperature is also fixed). Thus the where fl refers to the volume of the domain, S is its sur-
boundary condition (3.4) provides a plausible model for face, and j is the current-density operator. One naii-
an open system. tains the Hermiticity of the Hamiltonian by choosing

In fact, the liouville equation (2.3) subject to the basis functions for which the surface integral is identical-
boundary condition (3.4) generates an unphysical solu- ly zero: states well localized within the domain and sta-
tion ii the form of exponentially growing particle densi- tionary scattering states (or periodic boundary condi-
ties when it is applied to more general potentials that do tions) for which the incoming and outgoing currents can-
not have the symmetry of the uniform field (Frensley, eel. Because the total number of p;rticles in an open sys-
1985). The nature of the time-dependent solutions tem can change in response to externally imposed condi-
whether they be growing, decaying, or oscillating) de- tions, such a basis set is too restrictive.
pends upon the eigenvalue spectrum of the Liouville su- The violation of the Hermiticity of the Liouville su-
peroperator (the definition of which requires both the peroperator follows directly from the violation of Hermi-
differential operator and the boundary conditions). The ticity of the Hamiltonian. This leads to eigenvalues of
problem with the growing densities (and ultimately the the Liouville superoperator that have nonzero imaginary
identification of the correct model) is a consequence of parts, leading to real exponential behavior in the time
opening the system, which violates the Hermiticity of the dependence ofp. As mentioned previously, the inclusion
Hamiltonian operator and of the Liouville superoperator. of dissipative interactions will introduce decaying ex-
Recall the proof (Messiah, 1962) of the Hermiticity of the ponential behavior. It is thus quite enlightening to ob-
Hamiltonian (2.2). It proceeds by invoking Green's iden- serve both the separate and combined effects of dissipa-
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tion and open-system boundary conditions on the eigen- before, this connection requires a logical induction.

value spectrum of the Liouville superoperator (though The position coordinates x will be taken to be elements

technically it is no longer the Liouville operator when of a uniformly spaced mesh: I x lxj=jA, for

dissipation is included). For this purpose let us consider j = 1,2, . . . , N I. The dependent quantities such as the

an extremely simple model of dissipation. This model is wave function and density matrix then take on discrete

simple Brownian motion as described by the Fokker- values also, which will be denoted by 0j=0b(xj) and

Planck or Kramers equation (Kubo, Toda, and pi, =p(xi,xj). Using the simple finite-difference approxi-

Hashitsume, 1985). It is classically valid in the limit that mation (32 b/ax2)i = (;b__I- 20-i +0i +)/A2, we find

the particles of interest are weakly coupled to an ideal that the Hamiltonian (2.2) becomes

reservoir. Caldeira and Leggett (1983) have studied the 2

quantum-mechanical derivation of this equation and HIJ- (28i-6i -8i+ )+vi 6i (3.9)
have shown it to be valid at higher temperatures (Ah3 2mA1 A2lJ iiJ ,

smaller than or comparable to the response time of the for Q not on one of the boundaries. To incorporate the

reservoir to which the particles are coupled). In terms of boundary conditions, it is best to think of adding an addi-

p the Fokker-Planck equation may be written in the form tional mesh point at each end of the domain (points x 0

of Eq. (2.15) with the collision operator given by and XN + 1), and specifying the value of the wave function

(x -X') ___ 2 on those points. For example, to apply the homogeneous

('FPP= - Y 2 ax ax f2o (x -X') 2p Dirichlet conditions for a particle in a box, we would set
IrI I 0=0 and ON I I=0. Inserting these conditions into Eq.

=-Y/(iX _t+/fi+ X2_) /.2 )p, (3.8) (3.9) completely defines the matrix H,, for li,j<-N.

Similarly, if we wanted to apply Neumann conditions,
where y is the damping rate. The first term in Eq. (3.8) aO /3x =0, we would set 0 = 1.
describes dissipation and corresponds to a frictional force Writing the Liouville equation (2.3) on the finite-

equal to 7p, where p is the linear momentum. The difference basis gives
seernd term describes the thermal fluctuations. An im-

portant property of ()FP is that (0Fpp)(x,x)=0, which is , ,- , . (3.10)

required for consistency with the continuity equation. where the tetradic nature of J is made explicit. The

("FP will be used below to add dissipative interactions to discrete representation of L may be derived from Eq.

our open-system models. (3.9) and is

B. Discrete numerical model --ijk1- 2 --A, .46,,, . 8k +6 ±,,bJ 11

2m A'A

To explore the eigenvalue spectrum of the present +8ik6)+l,I)+(ot-- )5ikjl (3.11)

open-system model and those which will be investigated i

later, let us consider a finite-difference approximation to Again, the elements adjacent to a boundary require spe-

the Liouville equation (2.3) which reduces .L to a finite cial attention.

matrix whose eigenvalues may be readily computed. Let To evaluate the eigenvalues of _L and other super-

me emphasize that only the spatial coordinates will be operators, we must map the tetradic onto an ordinary

discretized; time remains continuous, so that the partial matrix, so that conventional eigenvalue algorithms may

differential (and eventually integro-differential) Liouville be applied. To do so for the finite, discrete case, we may

equation will be reduced to a set of coupled ordinary map the density matrix p onto a singly subscripted vector

differential equations with respect to time. of dimension N2 by p,, -p, with m z- i - I )N +j. Note

This particular situation requires some discussion. that with this mapping the inner product between two

Throughout the computational physics literature, discus- operators (2.4) becomes the ordinary inner product be-

sions of stability always involve a discretization with tween two vectors. The mapping of the tetradic J_ onto

respect to time. Because one is accustomed to dealing an N 2 XN 2 matrix follows immediately. The matrix
with continuum equations whose behavior is known to be representing 1 was actually constructed for N = 8 (result-

stable (or at least physical), the common assumption that ing in a 64X64 matrix for 1 ) using the potential illus-

any instability must be a result of the discretization trated in Fig. 4. Let us first consider a closed system

scheme is generally correct. However, a different situa- with no damping. This model is obtained by simply ap-

tion is being studied here. The validity of the equations plying the particle-in-a-box (homogeneous Dirichlet)

themselves (or more precisely the boundary conditions) is boundary conditions to the Liouville operator (3.11).

the issue. If a discrete-space, continuous-time model is The resulting eigenvalue spectrum is shown in Fig. 5(a).

unstable, there will be no time discretization that will All the eigenvalues are purely real, as expected from a
correct this instability. On the other hand, we wish to as- Hermitian superoperator.

sume that the stability of the discrete-space, continuous- In the second case the model system is taken to be

time model will be indicative of the stability of a closed, but damped. The Fokker-Planck damping opera-

continuous-space, continuous-time model. As mentioned tor (3.8) may be written in di "-retized form as
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yA] iA [(i -j)(28ik~j/--8i-l,/Sjk -8ik
8
, t_1,1) for i j

eij;kl 2 -J)'8ik~j (j-i)(28ik'j/ -8i + ,8jA -ik~j -,) for i <j (3.12)

This form preserves the important properties of CFP. To (or) - _2

illustrate the effect of dissipation on the spectrum of 2mA~X ( - 5 , kl,/+b,k'2.,)+(v,--I )i, I.,
(_L+i"(CFp), the zero-temperature limit (/3-oo) was
taken (so that the first term, describing fluctuations, van- (2orj+ 2

ishes) and the damping constant y0.0lwo (where 2mA2 ' +

w o=h/2mA2) was used. The resulting eigenvalue spec- - ii2 (3.14)X (or) __(-t.~ Sq"- i8~~
trum is shown in Fig. 5(b). Negative imaginary parts ---,N;k1 6 1. N1+ 6 ik 8N-1,k
have been introduced into all the eigenvalues (except pos- x

sibly one eigenvalue which is equal to zero within the nu- + (vi - v )6 ,k N.
merical roundoff error, which presumably represents the
ground state). These negative imaginary parts lead to or),,I -
damped motion, as expected. 2m A2

Now with this background we can consider the case of
the open-system boundary conditions (3.4) (zero diagonal + ( v, - vj )8Nk 8j.
gradient). The simplest finite-difference approximation The non-Hermiticity of-L'(r) follows from these expres-
for the condition (3.4) is sions. For example, I ,.1o = -A/(2m 2) but

So,.I=0. The boundary conditions have caused ele-

+ _ + ~ - ( I - ments of I to be canceled in a way that breaks the 1Her--a - ax I ( +Al,j -- i 
+  

i-Pij-1 mitian symmetry. The resulting eigenvalue spectrum is

plotted in Fig. 6(a). The non-Hermiticity of L" '' leads to
. (p, f L , O (3.13) some eigenvalues with nonzero imaginary parts. It is ap-
A. 1

J Lparent that these eigenvalues occur in complex-conjugate
pairs, with both positive and negative imaginary parts

for i or j equal to I or N. I hus the open-system Liouville present. This is a consequence of the time-reversal s n-

superoperator L (r (for open system, reversible) is ob-
tained by inserting boundary values p,o=p, ,., and

P.v - 1.] P. -ps, fand the expressions obtained by tran-
sposing the indices) into Eq. (3.11). For the sake of com- (a) 0.10......................
pleteness, let us write down the elements ofJ(( 'F that are
affected by the boundary conditions: 0.05

'- 0.00 ....uIemgmm

-0.05

0. -0.10 ............

(b) O. . ....... ..... ........... ........
0.1 0.05

S0.0 S • , 0.00c x x!

0. 0 -0.05

-0.1 0

001S 01 .... ,..... .... ........ ....

-0.2 ii -2 -1 0 1 2
1 2 3 4 5 6 7 8 Re(;k)

Position
FIG. 5. Eigenvalue spectra of the Liouville operator for a small
model closed system with the potential shown in Fig. 4. If the
system is taken to be conservative, the resulting eigensaluc

FIG. 4. Potential used in evaluating eigenvalue spectra of Liou- spectrum is shown in (a). All eigenvalues are purely real, as ex-
ville superoperators in the discrete model. This potential was pected. In (b) a damping term has been added, leading to nega-
chosen to have both a driving field and a barrier. tive imaginary parts for most eigenvalues.
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metry of both the Liouville equation and the open-system move the positive imaginary parts. In fact, a larger

boundary conditions (3.4). The eigenvalues with positive damping constant does lead to a stable model, as shown

imaginary parts produce growing exponential solutions in Fig. 6 (c), where y =0.03 o0 was used. All the eigenval-

to the Liouville equation, which would prevent any ap- ues now have negative imaginary parts, except for a dou-

proach to steady state. This open-system model is thus bly degenerate eigenvalue at zero (which must be present

physically unacceptable. because of the invariance ofp,1 and PNN)-
One might speculate that the problem of growing solu- Thus modeling an open system by applying the bound-

tions could be due to the absence of damping in the mod- ary conditions (3.4) will work only if the rate of damping
el. To test this, let us add in the Fokker-Planck damping within the system is sufficiently large (or, for the case of
term (3.12), as we did for the closed-system model. With electron transport, if the mobility is sufficiently low).
the same damping constant (y =0.0 1o0) as before, the The minimum acceptable damping rate depends upon the
resulting eigenvalue spectrum for ((or)+ih("FP) is that magnitude of the imaginary parts of the eigenvalues of

shown in Fig. 6(b). The addition of damping clearly does . 1 ")1 for the undamped system, which in turn depends
not solve the stability problem because it does not re- upon the form of the potential. In fact, the potential of

Fig. 4 was chosen because it produces larger imaginary
parts than potentials with greater symmetry. All this

adds up to a very unsatisfactory formulation for an

open-system model. The problems may be traced to the
time-reversal symmetry of the boundary conditions. To

obtain a proper formulation, this symmetry must be bro-

(a) 0.10. ................... ken.

0.05 X X Xx
. X X XX X IV. IRREVERSIBLE OPEN-SYSTEM MODEL

S00 . To provide a physical motivation for the ideas that

-0.05 x X X X openness necessarily involves time irreversibility, let us
x X X x consider another example system drawn from electronic

-0.10L 0...... .... technology, the vacuum thermionic device ("vacuum
(b) 0.10. ........... .... ............... tube" or "valve") (Langmuir and Compton, 1931; East-

man, 1949). These devices were made by introducing two
0.05 or more metallic electrodes into a vacuum through which

2 xX electrons could be transported without dissipation.
0.00 x x x X When a voltage was applied between anode and cathode

XX)~(X X* xx , *x xx x~(xxX (and the cathode heated to thermally excite electrons into
-0.05 X x the vacuum), a nonequilibrium steady state would be es-

X X X

-0.10 1...... I........ ...... I.......... tablished with a nonzero current flowing. Such a non-

(C) 0.10. equilibrium steady state cannot be established in a rever-
sible (or Hamiltonian) system. Consider what would hap-

0.05 pen if a population of electrons were introduced into
some sort of trapping potential in ultrahigh vacuum.

0.00 x X - The system would effectively be closed, and the motion of
the electrons would consist of periodic (thus, reversible)

-0.05 XX X X x orbits. Of course what happened in the case of the ther-
XX.X XX X) xXX mionic vacuum tube is that electrons were accelerated by

-0.10. ........ " ... .... .,... the electrostatic field until they impacted the anode,
-2 -1 0 1 2 where they lost their kinetic energy to collisions with the

Re(k) electrons in the metal. Their energy was thus dissipated
as heat. However, we can infer a much broader principle
from this device: Making contact to a system in such a

FIG. 6. Eigenvalue spectra for open systems using the bound- way as to permit particles to enter and leave (opening the
ary conditions of Eq. (3.4). If the boundary conditions are system) in itself introduces irreversibility into the behav-
changed so as to open the system, nonzero imaginary parts are ior of the system, so long as the contacts have a sufficient
generated, as in (a). Because the boundary conditions are time
rpver~vhle, these imaginary parts occur in conjugate pairs. If a number of degrees of freedom and enough indistinguish-
damping term is added as in (b), most, but not all, imaginary able particles to behave as reservoirs.

part, are negative. The few eigenvalues with positive imaginary Now, if the openness of the system is to be modeled by

parts are sufficient to render the model unstable. Stability can boundary conditions applied to the system, these bound-

be achieved by increasing the damping rate, leading to the spec- ary c(.nditions must themselves be time irreversible. A

trum (c. physically appealing way to ,,ehieve such irreversibility is
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to distinguish between particles moving into the system These expressions are derived under the assumption that
and those moving out of the system. It is then reasonable the domain is unbounded.
to expect that the distribution of particles flowing into Let us consider the interpretation of the terms of the
the system depends only upon the properties of the reser- Liouville equation (4.4). The first term on the right-hand
voirs to which the system is connected, and that the dis- side is derived from the kinetic-energy operator and is of
tribution of particles flowing out of the system depends the form known as a drift, streaming, or advection term

only upon the state of the system. The behavior of the (in various nomenclatures). This term is exactly the same
reservoirs is thus analogous to that of an optical black- as the corresponding term of the classical Liouville equa-
body. This picture leads to a fully acceptable model of tion with force F:

an open system . f -- - 2 a fc F f  4.6)

A. Continuum formulation m ap ZIP
The correspondence between the classical and quantum

To implement boundary conditions that distinguish be- drift terms will be exploited in defining the open-system

tween particles flowing into and those flowing out of a boundary conditions.

system, we must reexpress the Liouville equation (2.3) in Quantum-interference effects enter the Wigner-Weyl

terms of the classical phase space (q,p), where q in this representation via the nonlocal potential term of Eq.

case corresponds to the position x and p is the momen- (4.4). The kernel of this operator, V(q,p -p'), in effect

tum. This is naturally done by the Wigner-Weyl trans- redistributes the Wigner function among different p's at

formation, which transforms the density operator p(x,x') each position q. The extent to which it does so depends

into the Wigner distribution function f(q,p) (Wigner, upon the potential at positions remote from q [Eq. (4.5)].

1932; Heller, 1976; Berry, 1977; Carruthers and Za- This is the way that interference between alternative

chariasen, 1983). For the present purposes, the Wigner- paths is incorporated into the equation. Thus a rough in-

Weyl transformation consists of a change of independent tuitive image of the action of V(q,p -p') is that it

coordinates to the diagonal and cross-diagonal coordi- represents particles that have scattered off the potential
nates: at some point qiLr and, upon returning, interfere Nsith

the particles propagating over other paths. This image
q =(x +x'), r =x -x' (4.1) will be invoked to interpret the effects of cutting off the

followed by a Fourier transformation with respect to r. integral in Eq. (4.5) at some finite value, which is required
floed ariabyes and oe t ma to with e respintecs tof r in practical computations.
The variables x and x' may be expressed in terms of q Let us now consider a model in which the domain is
and r by bounded by q =0 and q =1. To address the question of

x -q + ,r, x' q - r . (4.2) boundary conditions, first note that in the Wigner-Wevi
representation, the Liouville equation (4.4) is of first or-

Thus the Wigner distribution can be expressed as der with respect to q and does not contain deri\ati\es

qwith respect to p. The characteristics of the derivative
qp r,q- ,r)e (4.3) term are lines of constant p, and we must supply one and

e eonly one boundary value at some point on each charac-
The Lioiville equation becomes teristic, because the equation is of first order on q. The

N p _ ! dpj V( 'f ') kinds of boundary conditions that are appropriate are il-
ot m aq h 2h qn p p lustrated in Fig. 7. To implement the picture described

above, that the particles entering the device depend only
upon the state of the reservoirs and that the particles

where the kernel of the potential operator is given by leaving the device depend only upon the state of the de-
vice, we should apply the boundary conditions illustrated

V(q,p) :2f< drsin(pr/)[,(q+± r)-v(q-'hr)]." in Fig. 7(c). That is, we set

(4.5) f(~ p~l _ l,fl ,
(4 .5)f ( , p) p -f houndar_ (p ) (4.7)

f l p .Op ,-righl) , ,p <p) bO-hundarN (P ,

where fllcf, is the distribution function of the reser-
voi o th lef of he sstemand', r,ghd,) is the distribu.-

'These are often referred to as "center of mass" and "relative" voir to the left of the system and .stediriu
coordinates, respectively. I feel that this is a misleading termi- tion function of the reservoir to the right. These bound-

nology. because it gives the incorrect impression that one is ary conditions are not invariant under time reversal, be-

dealing with a two-body problem. We shall see below that the cause time reversal would change the problem of Fig. 7tc)
significance of these coordinates follows from their relationship into that of Fig. 7(d).
to the superoperators \.. ank [Eqs. (2.9), (2.10)] generat- Conceptually, the boundary conditions (4.71 are identi-
ed by the position operator. cal to those employed in the conventional tunneling
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(a) Pmax (c) Pmax

p 0 -p----------------P 0.........................

-Pmax -Pmax

0 q 0 q

(b) Pmax (d) Pmax

p 0 -- - -- - - -- -- - -- - --- p 0 -- - - -- -- - - -- -- - ---

-Pmax -Prnax I

o q 10 q

FIG. 7. Possible boundary conditions for the Liouville equation (4.4) in phase space. The points at which the boundary values are
specified (indicated by a heavy line) can be at q =0 as in (a), at q =---as in (b), or divided between the two boundaries, depending upon
the sign of p, as shown in (c) and (d). The boundary conditions (c) are, in fact, the appropriate ones for an open system.

theory (see Appendices A and D), in the Landauer ap- Let us note in passing that cV can be written in two other
proach (Landauer, 1957, 1970; Biittiker et al., 1985, forms. One is Groenewold's expression (Groenewold,
Stone and Szafer, 1988), and in solutions of the 1946):
Boltzmann equation for nonuniform systems (see Appen-
dix C and Duderstadt and Martin, 1979). However, 'f(q,p) q
some care must be taken in this identification. It is true AJop

that the variable p goes over into the classical momentum ih a
appearing in the Boltzmann equation, by the correspon- -v q--- f(q,p)

dence principle. However, it is not true that p is the same 2 ap

quantity as the operator p, =(hl/i)/ax or its eigenvalue. (4.11)
In particular, as will be discussed in Sec. VI.A, the
traveling-wave boundary conditions actually depend The other is the Wigner-Moya' expansion (Moyal, 1949):

upon the energy of the state, rather than p. Thus the 2 , ()(h/2)2n+I '+ Iv (q)
boundary conditions (4.7) are conceptually identical to, 'Vf(q,p) o- )'- + 1)! _2n + I

but mathematically different from, those employed in the r 0

tunneling and Landauer approaches. X a2 +  1f (q,p)

Let us call the Liouville superoperator which results ap 2n +I

from the boundary conditions (4.7) l'oi) (for open system, 2 1
irreversible). For purpose of the present discussion, it ;in .qf ,41

will be separated into two terms: 2 aq ap

L"=iT'T+ i V , (4.8) where in the last expression it is understood that a/dq
acts only upon v (q). The utility of both of these expres-

where 'T is the superoperator derived from the kinetic- sions depends upon the existence of a rapidly converging
energy term of the Hamiltonian, series expansion for v (q). Such an expansion is not avail-

able for the abrupt energy-barrier structures that origi-

-f = af (4.9) nally motivated the present study, so the integral form of
'V (4.10) is preferred for practical computations.

and where 'V is the superoperator derived from the po-
tential term, B. Discrete model

(X d)(qp) f - V(qp -p')f(q,p') . (4.10) To investigate the eigenvalue spectrum of the Liouville

h q2 'pl operator subject to the lEundary conditions (4.7) we
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again construct a small, discrete model. The position when used to approximate a drift term.) The boundar
variable q will take the same set of discrete values that x conditions determine which of the above difference forms
did in the previous section: IqjIqj =jAq for must be used simply because one or the other will not
j = 1,2 .. Nq 1. The values of p are also restricted to a couple the boundary value into the domain. Again, let us
discrete, bounded set: Ipkpk=(ir/I/Aq)[(k -)/NP-4 imagine that the boundary conditions (4.7) are imple-

for k = 1,2 ..... Np 1. The mesh spacing in the p direc- mented by fixing the value off on mesh points just out

tion is thus AP=(r1li)/(N,Aq). The choice of discrete side the domain:
values for p follows from a desire to avoid the point p =0 f f fiudi. for Pk > 0
and the need to satisfy a Fourier completeness relation, f4, 1 ,
which will be discussed later. The discrete Wigner distri- f ].A houi.,a for PA < 0
bution is then related to the discrete density matrix of A

Sec. II.B by This scheme is illustrated in Fig. 8. Consider p, 1. 0. The

N q/2 2(p4.3A /h boundary conditions are specified for q,, and if this ,aluc
I = +I i ,__j, (4.13) is to be coupled into the domain, we must use the left-

-Nq/2 hand difference formula (4.16) for the gradient at q1 .

where j indexes position q, and k indexes momentum p. Consistency then requires that we use the left-hand
The discrete version of the potential term is readily difference for all qj (for pk > 0). Similarly, we must use
ediee version of. th.1 e pondtial them isreadil p the right-hand difference (4.17) for pk <0. In the context

defined. Using Eq. (4.13), we find that the discrete po- o yrdnmccluain uhadfeec ceei

tential kernel becomes of hydrodynamic calculations such a difference scheme is
called an "upwind" or "upstream" difference and is

2 Nq12 2kApjAq known to enormously enhance the stability of a computa-
in]) (4.14) tion (Roache, 1976, pp. 4-5). It has also been used in

neutron transport calculations at the kinetic phase

[Notice that Eq. (4.14) invokes values of v that are out- space) level (Duderstadt and Martin, 1979). The ele-
side the domain IqjJ = I ..... Nq 1. This expresses the ments of 'Tare thus
nonlocality of quantum phenomena and is one way in 8 ,h forp,, 0
which the environment of an open system influences the -7 _ Pk- .- 1

system's behavior. The values that one assumes for vj, TJ' m Aq 8A . .- 61 L/ for p -0

where j <0 or j > Nq, depend upon the nature of the en-
vironment. If ideal reservoirs are assumed, then setting
these values equal to the potential at the appropriate The terms 'TI.A (), and 'T\ q.: . A. couple to the fi\ed
boundary appears to be an adequate procedure.] The ele- boundary values of f and are thus the coefficients of in-
ments of Y are then

'Y k:.' =8,Vi(k - .rnod / -h= - V V ,/h

(4.15) E 0 0 0 - > 0 0

where the notation Vl.k,= VI.1A )rmod.V is introduced . o 0 -- 0 0 0 --04

to shorten the expressions to be derived from the discrete a 0 0 0 0 0
Liouville equation. Note that the elements of V are real P L>
and that ,AA'kJ so (ihV) is an imaginary q 0 <- 0 <- o <-0-<-o 0
Hermitian superoperator.

The boundary conditions (4.7) affect the form of the , 00

drift term ' because they determine the proper finite- - 0<- 0 <- 0 <- 0 <- 0 4-
difference form for the gradient. On a discrete mesh, a RESERVOIR - DEVICE - -E RESERVOIR
first derivative (f/aq)(q1 ) can be approximated by ei- 0
ther a left-hand difference, Variable internal node

f Fixed boundary nodedfJ"I(q) f(q 1 )-f(q_ I)
q ,f .... Aq (4.16)

FIG. 8. Discretization scheme for the kinetic-energy ,uper-
or a right-hand difference, operator (drift term) T in the Wigner representation. Uhe flos

of probability between mesh points is indicated by the armows.
df (qflq q )- f (q, ( which also define the sense of the finite-difference approxima-(ql) - A ... . .(4.17)

q right q tion for the gradient. A flow toward the right requires a left-
hand difference and vice versa. This is the "upwind" difference

(There is also a centered-difference form, [f(q) , 1) scheme and is uniquely determined by the form of the boundary

f(q, l)]/2Aq, which has poor stability properties conditions (4.7).
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homogeneous terms and are not strictly elements of T. (Note in particular that there is no eigenvalue equal to
(In particular, these terms are not included in the eigen- zero, and thus L)oil is nonsingular). Because the eigen-
value calculation because eigenvalues are properties of values have negative imaginary parts, the time depen-
homogeneous linear operators.) It is convenient to group dence of f contains only decaying exponentials, so the
these terms into a boundary contribution bjk: model is stable. The stability of this model follows from

the boundary conditions (4.7) and does not depend upon
blA= Px leftI for Pk >0 discretization (Frensley, 1986). To demonstrate this, let

mAq boundary fo) us consider the expectation value of (Loi')ih) with
Pk (4.2) respect to an arbitrary distribution f: (fI(o°i/ih)lf).

N'qk mq f nry, for p <0 . If we demonstrate that this is nonpositive for any f, we
will have shown that no eigenvalue of L( 0 'i)/ifi) has a

The discrete form of the Liouville equation then becomes positive real part, because the operator itself is purely
real. In the Wigner-Weyl representation the operator

t f (ijk ;jk'fj'k'+ bjk , (4.21) inner product (2.4) becomes simply (Wigner, 1971; Hil-
t j',k°  lery, O'Connell, Scully, and Wigner, 1984)

with the inhomogeneous terms explicitly displayed. Ex- (f1g)= I fdqfdpf(qp)g(qp). (4.23)
panding the definitions of the operators, the Liouville 21rh
equation can be written as The expectation value can be rewritten

afj, k-- Pk X [f+ 1. -f 1 'k for Pk <01 (f(LYoi)/iA)f)=(fII,-if)+(fIlIff)
at mAq f.k-fj-l,k for Pk > 0 f(

I (AltTIlt (4.24)

I Vj;i k, 'fj' " (4.22) because (f cVlf ) =0 from the antisymmetry of V. For
k' the mathematically homogeneous problem (source terms

This provides a more convenient starting point for many set to zero) the boundary conditions are f(O,p)=0 for
of the manipulations that will be described below. p >0 and f(i,p)=0 for p <0. With this we can integrate

The eigenvalue spectrum for .1"o) constructed from the expectation value for T and simplify it to obtain
Eqs. (4.8), (4.15), and (4.19) is shown in Fig. 9. The po-
tential of Fig. 4 was used, with Nq =8 and Np =8. All (fIITIjf)_ 1 r pf 2 (Op)dp - f pf 2 (Ip)dp

the eigenvalues of P" i have negative imaginary parts. 4irhm

[ f oPf(0,P)dP-f )Pf2(jp)d.j

2.0 l l < 0. (4.25)

1.5 Thus the stability of the solutions to the Liouville equa-

tion using L("' follows from the boundary conditions
1.0 alone. The physical significance of this argument is that

the particles in an open system will eventually escape and
0.5 the density will approach zero if there is no inward
0.0 current flow from the environment. However, if the po-0.0 xtential has a local minimum within the system deep

-0.5 Menough to create one or more bound states, any particles
in those states will not escape. Their contributions to f

- X ,X 4 x will be zero at the boundaries, and this is the significance
-1.0 of the case in which Eq. (4.25) is equal to zero. Such

x1. states should correspond to eigenvalues ofl" 'i) that are
-1.5X X equal to zero, although I have not observed such a situa-

X X tion in the models that I have examined. In an open sys-
-2.0 -1 1 2 tem of finite extent and with potentials of finite depth, the

-2 1tunneling tail of bound-state wave function will be

PAWh nonzero at the system boundaries, perhaps leading to a
finite rate of escape from that state within the present

FIG. 9. Eigenvalue spectrum for a model open system with ir- model.
reversible boundary conditions. All eigenvalues have negative Let us examine how this open-system model can be
imaginary parts, verifying that the model is stable, despite the used. The methods of calculation are more readily visu-
fact that no damping is yet included. alized if we write Eq. (4.21) :" a block-matrix notation:
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[f], ['T+cV] [Ill [ I1 f], [b],

d f12  1 [T121  I'T+ 'V122 [T1]23 [fh + 0 (.6= .. .. -. : + • 4.26)

* [T]q*Nq T+ If/INqq [i' [bN,

Here [f] and [b]j represent column vectors, and [T]j, quantum-mechanically correct. The only components of
and [Y],, represent matrices, whose internal indices the initial state that remain through the time-evolution
range over the allowed values of k. The [T] are diagonal calculation are those lying in the null space of the Lion-
matrices, whereas the I] are dense. The block- ville operator. All other components will approach
tridiagonal form of .'0 °

) greatly reduces the computa- steady-state values that are independent of the initial
tional labor required to solve the Liouville equation as condition. Thus, if there is no null space (the operator is
compared to that required to work with superoperators nonsingular), the initial condition makes no difference
of a more general form. whatsoever. A concern about the correctness of the ini-

Now suppose that we wish to find the nonequilibrium tial state is warranted only if there are bound states
steady state (af k / a t =0). Can we simply move the [b]j within the system, and possibly in the continuum limit
column vector over to the other side of the equation and where the smallest eigenvalue approaches zero.
solve for the fJk? The answer is yes, provided that the
operator fa ° i) is nonsingular. If there are no bound V. APPLICATION OF THE IRREVERSIBLE MODEL
states, all the eigenvalues of-L.0) are nonzero (see Fig. 9), TO TUNNELING DIODES
so 11 °

0 is a nonsingular operator and its inverse exists.
This steady-state solution for the Wigner function may To illustrate the application of this irreversible open-
be written system modcl to a specific physical system, let us consid-

fd d= _ihIl, lb (4.27) er the semiconductor heterostructure resonant-tunneling
diode (RTD; Chang, Esaki, and Tsu, 1974; Sollner ,i al.,

where fdc, refers to the "direct-current" case. Equation 1983). The study of this device provided the original
(4.26) is also used to solve time-dependent problems, as motivation for the present investigation. The RTD ex-
will be described in the following section. ploits the ability of modern heteroepitaxial technologies

Let us compare this approach to the most commonly to grow extremely thin layers of chemically different
studied problem in transport theory, transport in a spa- semiconductors (such as gallium arsenide, GaAs, and
tially homogeneous system with a uniform driving field aluminum arsenide, AlAs) on top of one another in a sii-
(as is done to evaluate transport coefficients such as gle crystal structure. To a surprising degree of accuracy,
mobilities) (Dresden, 1961; Conwell, 1967). This gen- the effects of such a structure on the motion of free elec-
erates a mathematically homogeneous problem, and the trons (or holes) may be modeled by an effective potential
solution corresponds to the null space of that superopera- that is related to the local energy-band gap and is thus a
tor which appears in the transport equation (Aubert, function' of the local chemical composition (Dingle,
Vaissiere, and Nougier, 1984). Thus the superoperator Wiegmann, and Henry, 1974). Therefore a structure con-
must be singular and, if the transport equation is linear, sisting of a layer of GaAs a few nanometers thick placed
the solution is not unique (the total density is not deter- between layers of AlAs (or more commonly a solid solu-
mined). What the present model demonstrates is that tion Al, Ga , -,As with x ==0.3) forms a rectangular po-
this formulation of transport through a spatially inhomo- tential well of finite depth for electrons. The shift in en-
geneous system leads to a mathematically inhomogene- ergy due to size quantization of the states in the well is
ous problem, which is in many respects a good deal enormously enhanced by the low effective mass of elec-
simpler than a similar homogeneous problem. For exam- trons in GaAs (0.067 of the free-electron mass), so the

pie, because r" is nonsingular, there is no problem of same shift is obtained in quantum wells tens of atomic
compatibility relations for the boundary conditions layers thick in GaAs as would be obtained in structures
(Lanczos, 1961). Any choice of distribution function on of atomic dimensions in free space.
the boundary will generate a unique steady-state solution. The behavior of the resonant-tunneling diode is sum-
The same considerations apply to the evaluation of the marized in Fig. 10. The device consists of a quantum
transient response of an open system by integrating Eq. well bounded by barrier layers thin enough to permit tun-
(4.4) with respect to t. The solution in unique and, as we neling. Outside the barrier layers are thick layers of
have seen, stable. lower effective potential, which are doped so as to have a

These considerations clarify a point discussed by significant density of free electrons and to which elect ri-
Kluksdahl et al. (1989), concerning the role of the initial- cal contact is made. The confined states in the quantum
ly assumed Wigner function in a calculation in which the well thus become resonances in this structure, and elec-
steady state is found by simulating the time evolution. trons may readily tunnel through these resonances only if
Kluksdahl et al. assert that the initial state must be they have the correct energy. The energy of the reso-
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FIG. 10. Summary of the properties of the quantum-well-resonant-tunneling diode. The J(V) curve of an experimental device (Reed
el al., 1989) at a temperature of 77 K is shown to the left. The diagrams to the right show the conduction-band profile of the device
at different bias voltages corresponding to the noted points on the J( V) curve. The shaded regions show the occupied electron states.
In equilibrium (A) the current is zero. As a bias voltage is applied, the resonant level (dotted line) is pulled down in energy so that it
lines up with the occupied electron states, permitting resonant tunneling (B). As the voltage is increased, the resonant level eventually
passes below the lowest occupied state in the cathode (left-hand electrode), and the resonant-tunneling current ceases (C). The
current subsequently increases as conduction through higher-energy states becomes possible. The rise in the conduction-band poten-
tial near the quantum well apparent in (A) is the result of a nonuniform distribution of impurity ions, which is a part of the design of
the device.

nances varies with externally applied electrostatic poten- 1989a). To obtain the results described here, the steady-
tial. In particular, at a sufficiently large bias voltage the state Wigner function was evaluated using Eq. (4.27) re-
resonance is pulled below the lowest occupied state in the peatedly for a set of potentials representing different ap-
cathode layer and the resonant-tunneling current ceases. plied bias voltages. (The assumed structure consisted of a
This leads to a decreasing current with increasing voltage 4.5 nm GaAs quantum well bounded by 2.8 nm
("negative differential resistance"), which is an unambi- Al0.3Ga 0.7 As barrier layers. The contact layers were as-
guous indication of resonant tunneling in this structure. sumed to be doped so as to produce a free-electron densi-

Over the past few years a great deal of work concern- ty of 2 X 1017 cm-3, and the temperature was taken to be
ing the resonant-tunneling diode, both theoretical and ex- 300 K.) The boundary distribution was taken to be
perimental, has been published. Most of the theoretical
treatments are expressed in terms of the transmission fboundary(Pk )(m*/.A /)
probabilities associated with pure quantum states. Due
to the volume of this work, no attempt will be made to Xln[I +e- 0 Pk/2, * +-] , (5.1)

review it comprehensively here, but we shall instead con-
centrate upon the kinetic models. to include the integration over transverse momenta.

[Here v -/ is evaluated at each boundary using the
charge-neutrality condition (AS).] The current density

A. Steady-state (dc) behavior was evaluated from fIdc, and the resulting J( V) curve is
plotted in Fig. 1I. Also shown for comparison is the re-

The steady-state behavior of the RTD has been evalu- suit of a more conventional tunneling theory calculation,
ated using the Wigner function in an open-system model such as that described in Appendix A. [More
by several groups (Frensley, 1986, 1987; Kluksdahl et al., specifically, it is the current density that would be ob-
1988, 1989; Mains and Haddad, 1988b; Jensen and Buot, tained by taking the expcetation value of the current
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FIG. 11. Current density as a function of voltage for a model
resonant-tunneling diode. The result of the time-irreversible ki- FIG. 13. Wigner distribution function for 0.13 V bias, at th
netic (Wigner function) model is shown by the solid line, and a peak of the J ( V) curve. The complex standing-wave patterns
more conventional tunneling calculation is shown by the dashed and prominent negative peak indicate that strong quantum-
line. While they differ in detail, the calculations agree as to the interference effects are present.
qualitative behavior of the far-from-equilibrium steady state
and predict tunneling currents of the same order of magnitude. One can cite at least two possible sources of this disagree-

ment. The more obvious one is that the Wigner-function

operator with respect to the density operator (A6).] The calculation necessarily introduces a limited coherence

two calculations agree on the qualitative shape of the length because in the discrete approximation the integral

J( V) curve and on the voltages at which the peak and defining the nonlocal potential (4.5) must be cut off at a

valley occur. There is a disagreement of some tens of finite value as in Eq. (4.14). The tunneling theory is

percent on the magnitude of the peak and valley current. based upon solutions of Schr6dinger's equation, which
necessarily assumes an infinite coherence length. A
second, and probably more fundamental, explanation for
the disagreement is that the tunneling and kinetic

theories are simply not equivalent (the kinetic theory be-
> ing Markovian while the tunneling theory is not). The
- 0.2l "

notion that these theories can be viewed as different ap-
6proximations to a more general many-body theory is ex-

- 0.1
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FIG. 12. Wigner distribution function for the resonant- VL. ea

tunneling diode at zero bias voltage (thermal equilibrium). In o Xo q
the electrode (flat-potential) regions the distribution is approxi-
mately Maxwellian (as a function of p). The density is reduced
in the vicinity of the quantum well due to size-quantization FIG. 14. Wigner distribution function for 0.24 V bias, corre-
effects. The very small ripples perceptible at larger p are due to sponding to the bottom of the valley in the J( V) curve. This
standing waves near the energy barriers, case is quite similar to the equilibrium case of Fig. 12.
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amined in Sec. VI.C. 2.5x 10 4 .........
The Wigner distribution functions that underlie the

J( V) curve of Fig. II are illustrated in Figs. 12-14. The 10 4

equilibrium (zero-bias) case is shown in Fig. 12. The
large electron density in the electrode regions, and much o

smaller density in the vicinity of the quantum well, is evi- 1.5x -

dent. Figure 13 shows the Wigner function for a bias
voltage of 0.13 V, which corresponds to the peak of the r 1. 0x10 4

resonant-tunneling current. The negative peak indicates -

that strong quantum-interference effects are present. In 0 104S0.5x10
contrast, the Wigner function for 0.24 V, at the minimum
valley current, is quite similar to the equilibrium case.

0.017. .

0 50 100 150 200 250 300

B. Large-signal transient response Time (fs)

As discussed in Sec. II.D, a principal reason for adopt- FIG. 15. Results of a calculation of the transient response of
ing a kinetic-level model is the desire to evaluate the time the resonant-tunneling diode. For t < 0 the device was in steady
evolution of an irreversible system. Again, this has been state at V=0. 13 V, the peak of the J( V) curve of Fig. 11. At
demonstrated using open-system Wigner-function models t =0 the voltage was switched to V =0.24 V, the bottom of the
(Ravaioli et al, 1985; Frensley, 1986, 1987a; Kluksdahl valley. The conduction current density averaged over the de-
et al., 1988). As an example, let us consider abruptly vice (which equals the current induced in the external circuit) is

changing the bias voltage on the model RTD. Then the plotted as a function of t. The current initially increases and

Wigner function f will initially equal the steady-state then declines with some superimposed oscillations toward the

value at the first bias voltage. After the voltage is new steady state. Parasitic effects are neglected.

changed, f will evolve and approach the steady-state
value at the new bias voltage. This time evolution may

be evaluated by integrating Eq. (4.22), now regarding the plotted in Fig. 15. The current initially rises in response
potential as a time-dependent quantity. The integration to the increased field and then decreases toward its
with respect to t is readily done by discretizing I in units steady-state value with some superimposed oscillations.
A. For purely numerical considerations of stability (see More insight can be gained into the transient process by
Frensley, 1987a), an effective way to implement the time plotting the current density as a function of both time
integration is using the "fully implicit" or "backward and position within the device as in Fig. 16. There is an
Euler" approach, which involves repeatedly solving initial peak within the quantum well, which reflects the
[f(t + A, ft W (Pl/ih)f(t +A, )+b , (5.2) shifting electron distribution in response to the increased

field. The current density in the downstream part of the

to advance the solution for f(t) forward in time. This is
equivalent to expanding the exponential of the Liouville
operator in a product expansion,

exp( -i.L'Lt/)=z( I + i o)t/nI)n . (5.3)

Note that, because I o," is not Hermitian, exp( i- t)t )

is not unitary. It is thus not necessary to use the Ss
unitarity-preserving Cayley (or Crank-Nicholson) form,

e H l- iHt /2n "O "

I + iHt/12n 'O 0 0,

which is preferred for the integration of Schr6dinger's

equation. The fully implicit scheme is a bit simpler to- '

implement (and to explain) than the Cayley scheme, but ) "_"

the latter will generally be more accurate (see Jensen and 0
Buot, 1989a) and probably should be preferred.

The transient-response calculation was carried out (us-

ing the fully implicit scheme) for the particularly interest- 'Po
ing case in which the RTD is suddenly switched across
the negative-resistance region. The spatially averaged FIG. 16. The same transient-response calculation as that shown
current density (which would equal the current induced in Fig. 15, but here the current density is shown as a function of
in the external circuit, apart from parasitic effects) is position q within the device.
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device then declines fairly monotonically, presumably L(o0(t) = oi) + ipf2.(cV
reflecting a simple single-barrier tunneling process which 2 ei"+c.C. (5.6)

empties the quantum well. On the upstream side of the The Wigner function can be expanded (to second order in
structure the current transient is much more oscillatory. X) as
The reason for this is presumably the change in reflection f(t)-f + ±Mf e +C.C. )
coefficient caused by the shift in the potential and the re- 2

suiting transient changes in the standing-wave patterns in + _ 2(f2(z) 2 iw +oit-+ . (57
this region. The most significant result of the calcula-
tion, however, is the demonstration of a stable approach Inserting Eqs. (5.6) and (5.7) into the Liouville equation

to steady state. and collecting terms of equal frequency and order in X
leads to these equations:

C. Small-signal ac response f - 0h Vf Idc) (5.8)
(00 + (yfo (dc

Another aspect of the behavior of electronic devices f_ rece- I=, )
which is of much interest to circuit designers is the 'Aree(= -21I.o (5.9)

small-signal ac response of the device. This is the 0

response of the device to a small sinusoidal voltage im- f(2w)_ iLi Vj ". (5.10)
posed upon a generally much larger dc bias voltage. 2 L(0i)+2hco
That is, one seeks to evaluate the effect of a small pertur- where f(dc) is obtained from Eq. (4.27). (The denomina-
bation on a far-from-equilibrium steady state. This is a tors of this perturbation series look a bit unfamiliar, with
rather different problem from that treated by the linear- expressions of the form L + iuo rather than L - ifw.
response theory of statistical physics (Kubo, 1957), which The reason for this is that we have mixed the quantum-
seeks to evaluate the effect of small perturbations on an mechanical convention for the time dependence, e -. 1/A,
equilibrium state. A perturbation expansion of the with the convention used in electronics, e"'b. While a
present kinetic theory may be readily obtained to evalu- consistently quantum-mechanical notation would pro-
ate the small-signal ac response of our model RTD duce more conventional expressions, it would also pro-
(Frensley, 1987b, 1988a; Mains and Haddad, 1988b). Let duce a great deal of confusion when we examine the
us assume that the potential of the system varies as imaginary parts of the response to determine whether

v(x,t)=vo(x)+Xf[v.(x)e",,c.c.I , (5.4) they resemble capacitances or inductances.) The super-
operator resolvent expressions in Eqs. (5.8)-(5.10) are

where c.c. denotes the complex conjugate, vo(x) is the dc readily evaluated with the same algorithms used to solve
potential including the heterostructure and the large bias the steady-state and transient problems.
voltage, v,,(x) is the potential due to the small ac voltage, Evaluating the expectation value of the current density
and A. is a perturbation parameter introduced solely to J for any of the terms of f(t) gives the conduction
keep track of the order of the perturbation (and is ulti- current as a function of position q:
mately set equal to unity). We should expect that thed
current induced in the external circuit can be expanded Jf if(q) = -2 ) f (q,p) .(5.11)

2 ~ irh m
as

The current induced in the external circuit by this con-

1(t)=10( Vo )+ 1jX[y(o)V,0e"Ot+c.c. duction current within the device is obtained by invoking
the Shockley-Ramo theorem (Shockley, 1938; Ramo,+ _LI 2 2 1 2r O+,I.2 )V

2  
2i,,+.C. 1

+ +arect(w) V + t 2, Voe c.c. ] 1939). We shall approximate the properties of the doped

contacting layers as ideally metallic conductors bounded
by interfaces to the higher-potential barrier layers at q,
and q,. The Shockley-Ramo theorem then takes the

where V0 =[v0(l)-v 0 (0)]/e and V,,=[v(l)-v(,(0)]/e form
are the total voltages applied, e being the charge of the q,
electron. The coefficients of Eq. (5.5) describe different ff]= - f, dq(Jf)(q), (5.12)
aspects of the ac iesponse: y is the linear admittance, the q,q,

amount of rectification of the sinusoidal wave form is where A is the area of the device. The coefficients of the
given by are, and the amount of second-harmonic gen- expansion of I(t) (5.5) are thus given by
eration is given by a2,. Note that at (a=0 these d )
coefficients are just the derivatives of the I(V) curve: Io(Vo)= f(5.13)
y(O)=dl/dV and ar,,,(O)=a2,(O)=d2J/dV2.  The y(o&)=J[f(o ]/V) , (5.14)
coefficients of Eq. (5.5) at an arbitrary frequency may be
obtained from the corresponding components of the areCt (0)) = 2 Vd , (5.15)
Wigner function. To do this we write the Liouville a2,()=._l[f2,,]/V2 (5.16)
operator as (.)
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It should be emphasized that these expressions represent inertia explanation was proposed in those papers. Dur-
only the conduction current component; the displace- ing the preparation of the present work the error was
ment current must be added to them to obtain a complete discovered, and correcting it brings the results into agree-
description of the behavior of the device. ment with those obtained by Mains and Haddad (1988b),

The linear admittance y of the present RTD model was who obtained positive Im(y). Thus the electron inertia
evaluated using Eqs. (5.8) and (5.14) at a bias of 0.17 V (in does not explain the behavior of Im[y (w)], and an alter-
the middle of the negative-resistance region), as a func- native explanation must be sought. A key piece of evi-
tion of frequency over the GHz and THz regions. The dence is provided by evaluating the admittance of struc-
results are plotted in Fig. 17. The conductance Re(y) is tures with either one energy barrier or none, in addition
negative at lower frequencies, as we would expect from to the double-barrier structure. These structures do
the dc results. This negative conductance "rolls off" and indeed show negative (inductive) lm(y), presumably due
becomes positive at about 6 THz, which is therefore the to electron inertia. The capacitive Im(y) is thus uniquely
maximum frequency of oscillation of the intrinsic device associated with the double-barrier structure and there-
(not including parasitic effects). The susceptance Im(y) is fore must reflect the confinement of electrons in the
positive and proportional to co at lower frequencies, quantum well. The idea that electron storage in a quan-
which is the behavior of a capacitance. Recall, however, turn well could be represented as a capacitance was pro-
that the displacement current that flows through the posed by Luryi (1985), but he identified this capacitance
geometrical device capacitance is not included in this cal- with the geometrical capacitance of the device, through
culation. The result that Im(y)>0 is somewhat surpris- which the displacement current flows. The storage ca-
ing, since the most obvious reactive effect in electron pacitance inferred from the present calculation is 1 -2 or-
transport at high frequencies is the electron inertia, ders of magnitude smaller than the geometrical capaci-
which leads to Im[y(o)] resembling that of an inductor tance.
with Im(y) negative (Champlin, Armstrong, and Gunder- The rectification and second-harmonic generation
son, 1964). The initial calculations of the admittance by coefficients arect and a2,, were evaluated using Eqs. (5.9).
the present author (Frensley, 1987b, 19 88a) gave negative (5.10), (5.15), and (5.16) at a bias of 0. 13 V (the top of the
Im(y) due to a programming error, and the electron- current peak). The moduli of these quantities are shown

in Fig. 18. While a,, decreases at higher frequencies.
ared shows a resonant enhancement over the frequency
range of I to 8 THz. This is quite interesting, because
arect was measured by Sollner et al. (1983) at a frequency
of 2.5 THz. The experimental data show that for most

" 2x105- bias voltages Ia,..(2.5 THz) exceeds the dc d 2l/dl'-',

E -. " . , indicating that the magnitude of a, must increase in
. -this frequency range. On the other hand, the rectification

.. process in the RTD has been recently analyzed by
oR=)Wingreen (1990), using a transmission-coefficient ap--- Re(y) ,

_2xlO-

i i l 1 i I l 1 I I 1 I I l ii I I I 1

log 10 10 loll W012 103 1W47

Frequency (Hz)
E 2x 107  -a.edi

FIG. 17. Small-signal ac response of the resonant-tunneling
diode for a dc bias of 0.17 V, which places the device in the /
middle of the negative-resistance region. The device conduc- >1
tance (the real part of the admittance, solid line) is negative at 7t lI 17

lower frequencies, with a value equal to that expected from the-.
derivative of the dc J( V) curve. The negative conductance de- -" "
creases in magnitude and lecomes positive at a few THz. The 0
complex behavior at higher frequencies is an indication that op- -

tical transitions are becoming important. The susceptance ?00 0  
101 1i2 i,3 o

(imaginary part of the admittance, dashed curve) has the same Frequency (Hz)
sign as a capacitance and is due to the effects of electron storage
in the quantum well. These quantities reflect only the conduc-
tion current and do not include the displacement current FIG. 18. Nonlinear response of the resonant-tunneling diode at
through the parasitic capacitance of a real device. This dis- a dc bias of 0.13 V, at the peak of the J(V) curve. The
placement current would prevent observation of the higher- rectification coefficient (solid line) shows a resonant enhance-
frequency effects in a realistic experimental situation. ment near 6 THz.
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proach. He found no evidence of enhancement, only a ous explanation for this absorption is that the peak
decrease in a rec as the frequency is raised. One reflects quantum transitions between the two lowest reso-
difference between Wingreen's calculation and that based nances in the well. A transmission-coefficient calculation
upon Eq. (5.9) is that the former includes the effects of indicates that, for the present example, these states are
only one resonant level, whereas the latter includes all separated in energy by 0.248 eV, for which the corre-
such levels. This suggests that the enhancement of arc, sponding photon frequency is 60 THz. The small
might involve transitions between resonant levels, though discrepancy in predicted frequencies is presumably attri-

the frequency of the transition between the lowest two butable to the effect of the Markov assumption in the ki-
levels in the present example is 60 THz, which argues netic theory, as in the case of the J( V) curves. Figure 19
against this notion. This illustrates one of the problems is interesting because it gives us a view of the transition
with a kinetic approach that incorporates all physical of a single system from the domain of electronics to that
processes: Such an approach provides little guidance of optics.
when one desires to identify that process which is the In addition to these effects, the irreversible open-
cause of some particular effect. system models have been applied to investigations of the

It is particularly interesting to look at (Jf"') as a effects of phonon scattering, as described in Appendix F,
function of both frequency and position q. This is plotted and the self-consistent potential in the RTD, as described
in Fig. 19. At frequencies below a few THz the current is in Appendix A. The various applications of open-system
independent of position, as one would expect in an elec- kinetic theory to RTD's clearly demonstrate the value of
tron device. As the frequency increases above this value, this approach, in spite of the existence of several un-
the ac current density becomes strongly nonuniform, in- resolved mathematical issues which will be explored in
dicating that the response of the current to the applied the next section.
potential is strongly nonlocal. A particularly prominent
peak occur- in Rely(q)] at a frequency of 50 THz and
centered within the quantum well. The positive value of VI. PROPERTIES OF THE IRREVERSIBLE MODEL
the conductance in this peak indicates that the in-phase
current density is locally large, so this part of the device A. Mathematical properties
is absorbing power from the ac electric field. The obvi-

Having demonstrated the computational utility of the

time-irreversible open-system model defined by Eq,. t4.4!
and (4.7), let us examine its properties in more detail.
First, note that the Wigner function derived from a

steady-state (4.27) or transient solution of Eq. 14.4) IS
purely real valued, because both the Liou~ille cquation

0" (4.4) and the boundary conditions (4.7) arc purcl, real.
~ 0.0This implies that the corresponding dlensity matrix is

Hermitian, as required.
0 Now consider the domain upon which the model is

C defined, as contrasted to the domain of a spatially closed
system. This is illustrated in Fig. 20. For a closed ss-

tem of length I (bounded by an infinite potential well), the
state of the system would be described by a density ma-
trix defined within the square formed by the long-dashed
lines. The coordinate rotation from the Wigner-Weyl
transformation (4.1) implies that the domain of the

o Wigner function maps onto the rotated square
("diamond-shaped domain") shown by the short-dashed

- lines in the x,x' plane. The density operator is, in effect,

a spatial correlation function. The partitioning of a one-
dimensional "universe" into a finite system bounded by
two semi-infinite reservoirs partitions the domain of the

FIG. 19. linear component of the ac current density (divided density operator into regions corresponding to various
by the applied ac voltage and thus expressed as an admittance) system-system, system-reservoir, and reservoir- reservoir
as a function of frequency and position. At lower frequencies correlations. The domain of the Wigner function does
the current densitN is spatially uniform, hut strong nonlocal
effects develop as the frequency is increased. This is a charac-
teristic of the transition from electronic to optical behavior. operator, and the Wigner function domain extends into

The prominent peak in Re(y) centered in the quantum well at regions that describe system-reservoir correlations. This
50 Ttlz is due to quantum transitions between the two lowest may well be a necessary characteristic of any useful
resonant levels. open-system model.
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FIG. 20. Domain of the density matrix and the Wigner distri- FIG. 21. Illustration of the inconsistency between discretiza-
bution function. The arguments of the density matrix are x and tions for the density operator and the Wigner function. The
x'. The Wigner function is obtained by transforming to the squares represent the elements of a bounded, discrete density
coordinates q and r, followed by a Fourier transform with operator. To transform this into a Wigner function only the
respect to r. The long-dashed lines indicate the system- filled squares may be employed because they form a discrete,
reservoir boundaries, and they partition the domain into regions rectangular mesh in the (q,r) space. This not only leaves the
corresponding to the various system-system, system-reservoir, elements in the corner triangles of the density operator unused,
and reservoir-reservoir correlations. The short-dashed lines but employs only one-half of the remaining elements. As a re-
represent the boundaries of the domain of the Wigner- suit, the transformation from discrete density operator to
distribution-function model. Note that the Wigner function in- discrete Wigner function is not unitary.
cludes contributions from regions that represent correlations
with the reservoirs.

mesh in (q,r) with Aq=-LA2 and A,=2A,. Mains and

Haddad (1989) have investigated such a scheme.It must be admitted that the shape of the Wigner- In summary, one cannot rigorously derive a Wigner

function domain as shown in Fig. 20 introduces certain In froma de o peratoroandeve a onea
mathmatcaldificutie. Tesearie wen ne equres function from a density operator and vice versa on a

mathematical difficulties. These arise when one requires finite, and particularly on a discrete, domain. As a result,

the density operator given the Wigner function and vice

versa. First let us note that the Wigner-Weyl transfor- any discussions that rely upon the equivalence between

mation of the density operator into the Wigner function the Wigner function and the density operator in such a

is a unitary superoperator in the sense of Eq. (2.6) if the case must be regardcd as plausibility arguments rather

domain [in (x,x') and (q,p)] is unbounded. This follows than derivations. A more practical consequence is that

from the equivalence of the inner products (2.4) and we have no adequate way to evaluate the operator prop-

(4.23). If the domains in (x,x') and (q,r) are bounded and erties, such as the eigenvalue spectrum or the inverse, of
a Wigner function defined upon a bounded domain.

do not coincide, the Wigner-Weyl transformation cannot T shpe fu then d omin fornte Wine

be unitary (and is in fact noninvertible), because some of tion is a consequence of its relationship with the super-

the information contained in either the Wigner function
operators generated by x and px =(h/i )d/ax. In terms

or the density operator will be lost. This is precisely the ofea rae q, and , hese superopertrs

situation illustrated in Fig. 20. An additional problem of the variables q, p, and r, these superoperators have

arises in the discrete model which involves the form of particularly simple forms:

the discrete mesh in the two coordinate systems. This is X(+ ) , (6.1)
illustrated in Fig. 21, which shows a discrete mesh in
(x,x') and superimposed upon it the rectangular mesh in (6 .2r=i- ,)
(q, r) employed in Eq. (4.13). In addition to the loss of in- ap
formation from the corner triangles described above, h a (6.3)
there is also a loss of information because the (q,r) mesh i + = iar'

points are only half as dense as the (x,x') mesh points. A a
The relation between these two meshes can be summa- ,-) aq (6.4)

rized as A. = A, and A, =2A,. [This mesh is implicitly
used in Eq. (4.14).] If the (q,r) mesh were set up with The Wigner function is thus expressed in terms of the ei-
Aq = A and A, = Ax, half of the (q, r) mesh points would genvalues of X(+, and 7 ,+), and the fact that these su-
not coincide with the (x,x') points. A way to incorpo- peroperators commute [Eq. (2.13)] is what allows us to
rate all the (x,x') points might be to use a staggered define the Wigner functioi in the first place (because its
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arguments are the eigenvalues of these superoperators). negative values are related to quantum interference, as
This observation is the point from which to begin to ad- we have seen. One can test the positivity of p using two
dress one of the obvious concerns connected with any different conditions (Narcowich and O'Connell, 1986).
phase-space formulation of a quantum problem: the pos- The most commonly invoked approach is to demand that
sibility of a violation of the uncertainty principle. Be- (6.5)
cause q and p are eigenvalues of commuting superopera-
tors, specifying boundary values localized in the (q,p) for all states V/,. The expectation value can be rewritten
plane does not necessarily lead to a violation of the un- as an operator inner product [Eq. (2.4)] by defining the
certainty principle. projection operator P,.= a!,) ( 0!,I:

How, then, does the uncertainty principle affect the
Wigner function? The usual characteristic of a distribu- (IptI')=Tr(PUp)=(PVIIp) . 6.t,

tion functon that violates the uncertainty principle is that Then the condition (65) can be transformed into the
it contains some states which have negative occupation Wigner-Weyl representation using Eq. (4.23) to obtain
probabilities. That is, the corresponding density matrix the condition
will have at least some negative eigenvalues. Consider,
for example, a distribution function f(q,p)=r8(q)8(p), fdq fdp f(q,p)fV.(q,p) > O, (0.7)
which clearly violates the uncertainty principle. The cor-
responding density matrix is p(x,x')=8(x +x'). If we (where fe, is the Wigner function for the pure state i0') for

operate on any antisymmetric state iba(x)=-,,(-x) all 4'. The application of this condition to the distribu-
with this density matrix, we get -V, (x), so - I is cer- tion functions obtained from the open-system modi is

tainly an eigenvalue ofp, which is thus not a valid densi- hindered by the problems of incompatibility of the finite

ty matrix. [Note, however, that examples of distribution domains discussed above. In the second test for positixi-

functions that satisfy the uncertainty principle and are ty of the density operator one demands that it be possible

still not valid Wigner functions have been found (Nar- to factor p into

cowich and O'Connell, 1986)]. p A ,0.8)
Therefore, to represent an acceptable mixed state, the

density operator p must be a positive operator. (Recall where A is some operator (Narcowich and O'Connaell,
that we have modified the normalization condition so 1986). Applying this condition to the corresponding dis-
that Trp = I is no longer a requirement.) The positivity tribution function requires the expression for the opera-
of p and thus of f as an operator does not imply that tor product in terms of Wigner functions (lIillert.
f(q,p-_O. It is well known that the Wigner function O'Connell, Scully, and Wigner, 1984). Condition 168)
can take negative values (Wigner, 1971), and that such then becomes (Narcowich and O'Connell, 186'

f (qp) fdq'fdp'fdq"fdp"a*(q+q',p+p')a(q+q",p+q")e2 Pq'p" q-p'/ 16.)1

where a (q,p) is the Wigner-Weyl transform of A. It ap- We can speculate that at least in a semiclassical situation
pears that the obvious ways to restrict the limits of in- ftdc, should be a positive operator if J"' 1I andf(right

tegration in Eq. (6.9) to a finite domain lead to expres- , oudry are positive. To establish the plausibility of the
sions that violate at least one of the semi-group axioms idea, let us consider the classical case. The properties of
which define operator multiplication. If an expression the classical Liouville equation (4.6) employing the open-
that did satisfy those axioms could be derived from Eq. system boundary conditions (4.7) are essentially the same
(6.9), we would obtain a useful definition of positivity in as those of the quantum case with respect to the eigen'al-
the open-system case. ue spectrum of the Liouville operator and the stability of

Now, does the procedure of directly solving for the the resulting solutions. If we assume that there is no

Wigner function under inhomogeneous boundary condi- damping within the system, then the classical Liouville
tions lead to a positive f'di operator? In the absence of a theorem holds within the system, and the distribution
rigorous definition of positivity for a Wigner function on function f . is constant along the classical trajectories
a finite domain, there is, of course, no mathematical (which are the characteristic curves of the Liouville equa-
demonstration that guarantees such positivity. It may tion). Any trajectory passing through a boundary must
well be possible to define a case of the present open- in fact pass through a boundary twice, once as an incom-
system model which does violate the uncertainty princi- ing particle and once as an outgoing particle (other'vise a
pie. However, let us qualitatively explore some of the density would have to build up in violation of the Liou-
considerations that bear upon this question. First, note ville theorem). Such trajectories cover the phase space.
that the positivity of f 'd , necessarily involves the posi- except for those regions which correspond to any bound
tivity of the boundary values, because f(dc is a linear orbits. Because fdl is constant along a trajectory and its
function of the boundary values as shown by Eqs. (4.27). value is fixed by the botndary condition, J',. must be
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770 William R. Frensley: Boundary conditions for open quantum systems

non-negative if, and only if, the boundary values are for some i. Thus Re;.k < 0 for all k. The fact that the
non-negative. The values of fcl in regions corresponding column sums in T for the outflow boundaries are less
to bound states will be non-negative if and only if the ini- than zero makes T nonsingular. (In a master operator
tial values of fe, (with respect to time) are non-negative, describing a closed system, all the column sums would be

How might these considerations be modified in a zero, which implie: that the determinant would be zero,
quantum-mechanical system? Or, in other words, how so there must be an eigenvalue equal to zero.)
can one get into trouble applying the open-system bound- The fact that the upwind discretization generates a
ary conditions to a quantum system? The only obvious master operator is the fundamental reason for its success,
case would be an attempt to apply the boundary condi- both in the present context and in the more traditional
tions (4.7) in a region where there were strong interfer- applications of transport theory (Roache, 1976, pp. 4-5;
ence effects, such as standing waves. We can easily im- Duderstadt and Martin, 1979). Now, in the quantum
agine that, for example, forcing f to have a large density case, the complete Liouville operator 1 (in the Wigner-
at a boundary point where a node in the density should Weyl representation) cannot be a master operator, be-
occur would introduce spurious states with negative oc- cause we know that the Wigner distribution can have
cupation. To avoid such situations, one should apply Eq. negative values, which a master operator would not per-
(4.7) only in reasonably classical regions of a system. In mit. As we have noted, the quantum-interference phe-
practice, this means at a distance of at least a few times nomena enter the Wigner distribution via the potential
the thermal coherence length AT [Eq. (3.3)] away from superoperator Y. The fundam-tal result of the present
any abrupt feature of the potential (where the standing work is the demonstration in Fig. 9 and Eqs. (4.24) and
waves are smeared out by thermal incoherence). At (4.25) that the Markovian model which follows from the
lower temperatures, one would use the reciprocal of the irreversible boundary conditions (4.7) introduces the
Fermi wave vector, rather than )LT- necessary stability properties in the quantum case as well

Now let us examine in more detail the mathematical as in the much more obvious classical case.
structure of the model that results from the time- It is interesting to consider the form that T assumes
irreversible boundary conditions. The discrete expres- upon transformation back to a real-space density-matrix
sion for the drift term T of the Liouville equation (4.19) representation. For this purpose let us assume that we
has the form of a master operator (Bedeaux, Lakatos- have defined the Wigner function on a discrete basis with
Lindenberg, and Shuler, 1971). Such an operator, when respect to q and on a continuum basis with respect to p.
applied to a distribution function, has the effect of re- Then T is given by
moving some fraction of the density in each possible state
and redistributing that fraction among the other possible (Tf)(q,p) _ __P__ jf(q +Aq,p)-f(q,p) for p <0
states. For a finite, discrete model the properties of the m Aq f (q,p)-f (q - Aq,p) for P > 0

matrix M representing a master operator are (6.12)

m1 < 0, To transform this back to the density-matrix representa-

in, >0 for i j , (6.10) tion, we must evaluate
<0. ("Tp)(q,r) = f )(q,p) (6.13)

21l

In the last condition the column sum is actually equal to with Eq. (4.3) substituted for f. [To simplify the result-
zero except for those states j which can lose density to an ing expressions, we shall express the arguments of p in
external reservoir, as is the case for the open-system terms of q and r of Eq. (4.1) and Fig. 20.1 Evaluation of
model on the outflowing boundaries. All the eigenvalues Eq. (6.13) requires the formula
of a matrix satisfying the conditions (6.10) will have non-
positive real parts (Oppenheim, Shuler, and Weiss, 1977, 2'. pieir8 1 1 r 8(
Chap. 3). This may be readily demonstrated by appeal- fo 2 ar -- - -_( (6.14)
ing to Gerschgorin's theorem (Wilkinson, 1965), which
states that every eigenvalue of a matrix A lies in at least and its complex conjugate. Letting Aq approach zero we
one of the circular discs (in the complex plane) with find
centers at a,, and radii i, , la . To apply this theoremX a.('Tp )(q,r)
to the master operator M, let us take the matrix A to be
the transpose of M, A =MT to change the column sum - III i8p(q+r)+AL -f dr' a2p(gr')
condition into a row sum. The eigenvalues of M and A m ar aq 2r -= r -r aq2

are identical. Then because aij is negative for i =j and
positive for i *j and is real for all i and j, we find that the (6.15)
real part of each eigenvalue -k must satisfy The second term in Eq. (6.15) contributes an anti-

a,, - I a,, < Rekk < a + a = !S a1 
< 0, (6.11) Hermitian component to X. The appearance of 8 /2 q 2

It# , in this term is reminiscent of the "numerical viscosity"
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that is a property of some finite-difference formulations to the use of periodic boundary conditions in the analysis
of transport equations (Press, Flannery, Teukolsky, and of quantum-transport phenomena. The great disadvan-
Vetterling, 1986). The principal-value integral in Eq. tage of periodic boundary conditions is that they do not
(6.15) has the desired effect of distinguishing the sign of address the case in which the potential varies
the momentum of the states present in p. To see this, significantly across a system. That is, their use restricts
suppose that there is a term I k ) (k I =eikr contained in p. one to the study of low-field phenomena. It has been
One could evaluate its contribution to the integral in pointed out (Yennie, 1987, footnote I I acknowledging
(6.15) by contour integration, closing the contour in the private discussion with M. Weinstein) that quasiperiodic
upper or lower half-plane if k were positive or negative, boundary conditions (i.e., periodic within a phase factor
respectively. But then the sign of the contribution of the which can be removed by a gauge transformatiow are
pole on the real axis would change as the sign of k necessary if the momentum operator is to be Hermitian
changes. The anti-Hermitian term would vanish, except on a finite domain. The present work demonstrates that
possibly for a surface contribution, in the limit Aq -- 0. far-from-equilibrium phenomena can be modeled by em-

This description of open systems in terms of p(x,x') ploying a non-Hermitian momentum superoperator.
has not yet been developed into a workable model. How- The connection between symmetries and conservation
ever, there is a strong motivation for doing so in the con- laws is undoubtedly one of the most fundamental results
text of semiconductor heterostructures. In such a struc- of the quantum theory. However, if one is faced with the
ture the electron energy momentum relation can be con- task of describing the behavior of a nonconservative sys-
siderably more complex than a simple parabola, and it tem, the inability to modify or violate the conservation
changes from one material to another in ways that can- laws becomes an obstacle to defining a realistic model,
not be represented by a shift in the local potential. The rather than a benefit. The problem is that one wants a
simplest example of such an effect is the change in model whose solutions stably approach a steady state,
effective mass as an electron crosses a heterojunction. As which requires complex-valued eigenvalues, but the ex-
described in Appendix E, this leads to a highly nonlocal pectation values of physical observables should be real.
form for the kinetic-energy superoperator in the Wigner- The present analysis of open-system models demonstrates
Weyl representation. More complex features of the that these conflicting requirements can be accommodated
energy-band structure can be modeled by any of a num- at the kinetic level, because the roles of generating the
ber of localized-basis-function schemes which may re- dynamical evolution and evaluating observables are filled
quires more than one basis function per lattice site. Such by different superoperators. If we reexamine the models
schemes could easily fit into an approach expressed in described above, we find that the dynamic effects such as
terms of p(x,x'), but it is not at all obvious how to in- generating time evolution or moving density by current
corporate such effects into the Wigner function in view of flow are described by commutator superoperators, and
the incompatible discretization requirements illustrated these are the superoperators that become non-Hermitian
in Fig. 21. when one incorporates interactions with the outside

Of more general interest is the appearance of Eq. (6.14) world. The measurement of the expectation values of ob-
in the deductive chain leading to (6.15). Such a relation, servables is done by anticommutator superoperators, and
more often expressed in the form these, with proper attention to the definition of the

I I domain and boundary conditions, remain Hermitian.
-=p -- i rr(o), (6.16) This separation of function has been noted by Prigogine

oic 0 (1980) in the superoperators generated by the Hamiltoni-
is usually encountered in the analysis of irreversible an. In the open-system model the momentum super-
quantum phenomena. It is the mathematical expression operators appear in similar roles, and this demonstrates
of the fact that a cont: .uum of states (and therefore of the existence of a more general underlying structure in
frequencies) provides enough degrees of freedom that a the kinetic theory.
Poincare recurrence can be postponed indefinitely. It ap- Let us consider the superoperators P, + and 'P, , de-
pears in the analysis of behavior in the time and frequen- rived from the momentum operator. We have already
cy domains, and is used to express the initial conditions observed that the kinetic-energy term of the Liouville
that lead to irreversible behavior: no advanced waves in equation (2.3) can be written as 'P, + 'P, - ,/m (3.6). ', . ,
electrodynamics (Bjorken and Drell, 1964), or adiabatic will be Hermitian if we restrict our attention to density
switching-on in many-body theory (Kohn and Luttinger, matrices whose off-diagonal elements approach zero for
1957; Fetter and Walecka, 1971). In the present model large x -x' (so that integration by parts may be per-
such a relation appears in the position and momentum formed without a surface contribution in an integral over
domains and expresses the effects of the spatial boundary r =x -x'). Such density matrices describe normal sys-
conditions. tems (as opposed to superconducting ones, or systems

B. Superoperator symmetry and physical observables with some other long-range coherent effect) at nonzero
temperature. In such normal cases 'P(, produces the

One of the benefits of the time-irreversible open-system real-valued factor p in the drift term (4.9). 'P, , generates
boundary conditions is that they provide an alternative the gradient in T and is thus the superoperator that is
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rendered non-Hermitian by the boundary conditions order moment equation of the Liouville equation. The
(4.7). higher-order moments of the Liouville equation may be

We can also see the dichotomy of function between obtained by operating on the equation with P + , (or d)
'P( ) and P-, by examining the elementary quantum and evaluating the resulting expression along the diago-
continuity equation, which is conventionally written nal. Let us denote the evoluation .-. n operator kernel

aa for x =x'=q by angular btankets, (p)q =p(q,q). This i-
-- , -(i,J) ,(6.17) equivalent to the phase-space procedure of multi-Ayingat ax by some power of p and then integrating over all p, so

where that the corresponding expression for the Wigner func-
tion is

(*J)=mi ax (6.18) f'P (6.20)

By now we should readily recognize the presence of P( +) The moment equations we shall derive are a special case
in the current-density operator J. In fact, the current of those that have been discussed by a number of authors
density is much more naturally regarded as a superopera- (Fr6lich, 1967; Putterman, 1974; lafrate, Grubin, and
tor, Ferry, 1981; Kreuzer, 1981), because we shall not consid-

='P /m , (6.19) er two-body or dissipative interactions. The objective is
to demonstrate the role of the anticommutator super-

and we see 'P, + in the role of measuring an observable. operators in this procedure, a point that has not been
At the kinetic level the continuity equation is linear in previously articulated.
terms of the density matrix p and is simply the Liouville As a starting point from which to derive the moment
equation evaluated along the diagonal x =x'. equations, let us rewrite the Liouville equation in super-

The continuity equation is of course just the zeroth- operator notation, making use of the factorization (3.6):
1

P --I ++V(-) p . . + + I-." (6.21)
at ifim I q m qi

The manipulations required to generate the moment with fc(p1 ,p 2,q)dpl=O, for the Wigner function (see
equations may be considerably simplified by using some Appendix F).
superoperator relations to evaluate the effect of P( + , on The first moment equation is readily found to be
the potential and its derivatives. To derive the necessary a(dp)q a aV
expressions, let us consider an operator G =g(x)8(x m - -- Hp ,
-x'), which is diagonal in position space. The commu- at aq aq
tators of the derived superoperators 9(-_ and !9,, with where fl =HP2+)/m is the momentum flux density. [For
ltg ,are then two- or three-dimensional models, the direct product of

[P 9, I the two vectors 'P(+ is taken, and HI will be a tensor

(6.22) (Landau and Lifshitz, 1959).] Equation (6.24) is identical
[P, I), -q-)]= 4 ig9_), to its classical counterpart. If we integrate it with

respect to q (assuming that the domain is rectangular in
where 9' indicates the superoperator derived from the the (q,r) coordinates and extends over 0<q </], we ob-
spatial derivative ag/ax. Note that ( 9(_ p)q = 0 for any tain a generalization of Ehrenfest's theorem to the case of
such operator, and ( + V)q =g(q)(p)q for any opera- an open system:
tor p. Now we may readily derive the moment equations. av
The zeroth moment is thus m-f'(dp) dq=-f- (p)qdq+(Hp)o-(p)I

8(p q _ ( 1P ) q (6.23) (6.25)

at aq (

which is a familiar form of the continuity equation. If a The last two terms represent the effect of opening the sys-
collision term is included in the kinetic equation, it must tem: A flux of momentum density through the boun-
have a form such that ( ep)q =0 if the theory is to satis- daries of the system will affect the current flow within the
fy the continuity equation. This means that system. To make contact with hydrodynamics, we would
C (x I,x I;x 2,x =0 in the density-matrix representation follow the standard kinet .- theory manipulations
[a condition satisfied by the Fokker-Planck operator (Kreuzer, 1981, Chap. 8) and define a kinetic pressure
(3.8)] or tensor

C (qM,pl;q2,P2)=6(q -q2)c(pP2,ql 3Jy
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and separate I1 into Peq1i=0=8(X -x') . (6.31)

(Hp)q =(Pp)q +Q(P +)/m . When this equation is integrated, the resulting densities

Continuing with the above procedure, we may derive a in regions of constant potential are found to be equal to

second moment equation by operating on Eq. (6.21) with the semiclassically expected value

P +)/2m to obtain (V2 IXT ) exp[fl(p-v)]

___ + \ v (626) An example of an equilibrium density matrix obtained
-t\--2m /q 2ma2P q- 8q 6., from such a calculation is shown in Fig. 22.

Here we see that again the anticommutator super-
Quantum corrections in the form of terms containing operator appears in the process of evaluating an observ-

12a3v/8q3 will begin to appear in the third and higher able, in this case for the purpose of evaluating the energy

moment equations, as one would expect from the abeinticsefrheppoefevltnghenry
moment equatinsiasone(4.12. wo expectro the and thus the occupation probability of the possible states.
Wigner-Moyal expansion (4.12). However, the second Wewudxpcthfotisurs, / ogttob

momet euaton pesets ometingof n amiguty. We would expect that, for this purpose, Yi, ,, ought to be
moment equation presents something of an ambiguity. Hermitian. Its Hermiticity in fact depends upon the

We might also derive it by operating on Eq. (6.21) with H an. o hemi n e dependition the

the iT,+ derived from the kinetic-energy operator T. shape of the domain when the boundary conditions (34)
These are not at all the same superoperators:applied. Because + is an elliptic operator, it is

easy to show that it will be Hermitian when the domain

p+_ h2  
_ a2 a2 is rectangular in the (q,r) coordinates, so that the gra-

- -2 2  + (627
2m 8m x 2  a x, ax, (6.27) dient in (3.4) is normal to the system boundary. It is not

ii (]2 Hermitian when applied to a domain that is square in the
8
~
2 a2  (x,x') coordinates, as in the calculation illustrated in Fig.

T x 2 + 2 (6.28) 22. However, the departure from Hermiticity is small,

Putterman (1974) displays both of these forms and
notes that both lead to the same bulk properties, thus any
physical difference must appear in a surface contribution.
It is not the purpose of the present discussion to investi-
gate these issues in detail, but only to demonstrate that 0.1
anticommutator superoperators appear naturally in any
attempt to evaluate expectation values in kinetic theory. 0.0 '","."..... - - , -

The same dichotomy between commutator and an- 1 0
ticommutator superoperators can be seen in the case of
the superoperators generated by the Hamiltonian H. Of
course fH, -, is just the Liouville superoperator.Z, and we
have examined at length the need for a departure from
Hermiticity in the case of 1. We have not yet encoun-
tered a need for the anticommutator If + . One place it
does occur is in a generalization of the Bloch equation (5,
(3.1) to the case of an open system. If one attempts to
compute an equilibrium density matrix as a finite seg-
ment of a much larger system by modifying the boundary
conditions on p in the Bloch equation, one quickly dis-
covers that product Hp must be symmetrized to obtain FIG. 22. Equilibrium density matrix obtained by numerically
sensible answers. Thus the Bloch equation becomes integrating the generalized Bloch equation (6.30) subject to the

reversible open-system boundary conditions (3.4). The poten-
aPeq/af3=- 2(HPeq+PeqH)= - H +eq . (6.29) tial, displayed above, represents the sort of features that are

now realizable using semiconductor heterostructure technology.
If the time-reversible open-system boundary conditions The chemical potential p is indicated by the dashed line. The
(3.4) are applied to the Bloch equation, one obtains a calculation emplo , d parameters appropriate for the
quite useful method for evaluating the equilibrium densi- AI,Gal ,As system at 77 K. The three energy barriers create

ty matrix (in contrast to the disastrous effect these two identical "quantum wells," bounded by contacting layers.

boundary conditions have upon the time evolution). The lowest energy states in these wells are pushed toward

Taking into account our particle-density normalization higher energy by size quantization, which reduces the electron
density in the wells via the Boltzmann factor. The shallow

of p, we find that the correct Bloch equation is peaks off the diagonal measure the correlation between the

phase of the electron at different positions, and indicate in the
aPeq/8-- -/(1 ('/f( -)Peq , (6.30) present case that the symmetric combination of the well states

has a greater occupation factor than the antisymmetric com-
with the initial condition bination.
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and the results are physically quite reasonable. I have [If interactions are present, collision terms involving the
not yet implemented a program to perform such a calcu- self-energy appear on the right-hand side of Eqs. (6.35)
lation on a rectangular domain in (q,r), but this would be and (6.36).] Without interactions, Eq. (6.35) is just the
the proper way to proceed to evaluate the equilibrium Liouville equation and (6.36) is a symmetrized
density matrix using open-system boundary conditions. Schr6dinger equation. On an unbounded domain, these

Having noted that W-(+ appears in the evaluation of equations simply reproduce pure-state quantum mechan-
the equilibrium density matrix, we can address a point ics, as noted above, and the usual tunneling theory fol-
raised by Dahl (1981). It is that .L, by itself, does not lows. However, if we restrict the domain so as to obtain
define a unique eigenvalue problem in the wave-function the open-system case, and we wish to reproduce the tun-
space of a quantum system; but together with W, +, it neling theory, we have to apply traveling-wave boundary
does define such a problem. This consideration enters conditions such as those discussed in Appendix D. Such
the present problem only for bound states localized boundary conditions necessarily introduce a dependence
within the open system (Carruthers and Zachariasen, upon o into Eq. (6.35). Even though we are still consid-
1983). As noted earlier, such states would lead to a non- ering a "noninteracting" system (in the usual sense of no
trivial null space of 1L. The occupation of such states dissipation), we see that additional co-dependent bound-
would have to be determined as an initial condition, such ary terms must appear in Eqs. (6.35) and (6.36).
as an equilibrium distribution evaluated using ]1(+ . The Markovian models neglect this o dependence.

They are thus not equivalent to the tunneling or scatter-
ing theory. One can view such models either as an ap-

C. Relation to many-body theory proximation to the tunneling theory, or alternatively, as

I have remarked that the Markovian kinetic models simply a different approximation to the underlying

considered here are not equivalent to the usual elementa- many-body theory. In the latter view, the steady-state
ryconsider echcar oevlt o sthes sucas en- tunneling theory is obtained by neglecting the T depen-ry quantum-mechanical models of systems such as tun- deeofGwhrateMrkvnmdlisband

neling diodes. Let us now explore the differences be- by neglecting the co dependence of G <. Thus we may re-

tween these two types of models by examining how they gardt Mro appxmtn as a a phor ayum-
may be viewed as different approximations to a single gard the Markov approximation as an a priori assump-
may-bdy viedry. as diee approxihtomao tase tion that G < is independent of co. Inverting the Fourier
many-body theory. In the approach to many-body trans-

port theory developed by Kadanoff and Baym (1962) and transform (6.34) shows that this is equivalent to assuming

by Keldysh (1964) and elaborated by Langreth (1976) and G '(x,x', T, )ip(x,x'; T)6(-r) . (6.37)
by Mahan (1987), the description of a quantum system iscontained in a Green's function, This makes explicit the Markov assumption that the evo-

lution of the system does not depend upon its past histo-
G'(x,t;x',t')=i(P*(x',t')kP(x,t)) ,(6.32) ry.

To establish the plausibility of the Markov assumption
where is the field operator. The density operator p can [Eq. (6.37)], let us again consider the picture of an open
be obtained from system as a finite segment of length I of a much larger

p(x,x';t)= -iG <(x,t;x',t). (6.33) "universe" of length L which is occupied by a free-
electron gas. The Green's function for this noninteract-

Note, however, that the Green's function has, in general, ing system is
a second time argument t', and this supplies the addition-
al degree of freedom required to describe non-Markovian G < (k, r) = Wk e , (6.38)
behavior. The demonstration of the correspondence be-behaior Thedemnstrtio of he orreponencebe- where wk. is the probability that state k is occupied and
tween the Green's-function formalism and more classical er is the rob that state k i ied and
transport equations proceeds applying a Wigner-Weyl- Ew is the energy of that state. Now, by examining G <

like transformation to the time variables: Define new
variables T= (t +t') and r = t -t', and then Fourier 0_< x'M 1) we cannot resolve the wave vectors of any exci-

t with respect to tations to an accuracy better than ±iT/I. On the other
transform G hand, because the "universe" is of a much larger length

G ' (x,x',t,W)= fdt e ".G <(x,x',T,r) . (6.34) L, there will actually be many wave-vector states within
any such interval. Thus the G < that one would observe

In the absence of interactions, the equations of motion within the system would be an average over these states
for G ' then become (Mahan, 1987), in the present nota- of the form
tion,

<k, r) = f_!dk'wk,e -E/ (6.39)
ih 1 G =0 (6.35) 21r k-"//

I Using dE/dk =Ask, where sk is the velocity of state k,

(hto- t, ,)G ' =0 . (6.36) we can change the integration variable to an energy, and
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perform the integral to obtain differential equations, as approximations to the "truth"

k e  sin(rskT/) embodied in the continuum formulation of the problem

<(kT)=wke iEkr (6.40) (for example, Lapidus and Pinder, 1982). Such a discrete
1rskr/L model can represent the continuum solution only to

The bracketed factor approaches 8(7) as 10. Now, I is within an accuracy proportional to some power of the

fixed, of course, and thus the width of the "8 function" is mesh spacing (or other appropriate measure of the
coarseness of the discrete model). This tends to lead one

fixed. Moreover, the width is just the transit time across

the system at the given k. This suggests the interpreta- to believe that the physics of the situation can be

tion of Eq. (6.40): Any excitation within the system will represented only to a given order of accuracy, so that
propagate away (out of the system), and thus its temporal such expressions as conservation laws (or balance equa-correlation function will decay after a time of the order tions) will be satisfied only to that order (see, for example,
of the transit time across the system. This demonstrates Aubert, Vaissiere, and Nougier, 1984). A corollary to
the motivation for the Markov assumption [Eq. (6.37)] this view is that higher-order approximations produce
the mlsoti tationfo .The a erko ass tion [Eq (6.3) pbetter models. Such is often not the case (Press et al.,
and also its limitation. The generalization of the present 1986), because higher-order approximations usually ad-

open-system model beyond the Markov approximation mit sprius h or eength mo s hich ad

has not yet been attempted and would be an obvious task mit spurious short-wavelength modes which adversely
affect both the stability and accuracy of such models.for the further development of this approach. [The ini- In fact, a better guiding principle is to seek discrete

tial steps in this direction might be found in the work of models that are constructed so as to satisfy exactly the
Ringhofer, Ferry, and Kluksdahl (1989), who study the
formulation of nonreflecting boundary conditions for the physical laws that govern the behavior of the real system.

Wigner function. This work, however, is concerned pri- In practice, one often finds that it is possible to satisfy
marily with obtaining local (in space and time) approxi- only some, but not all of these laws. Which laws are ex-
mations to the rigorously nonlocal problem.] actly satisfied and the order of the error terms in the

remaining laws depend upon the details of the particular

discretization scheme. This situation has led to the con-

VII. DESIGN AND ANALYSIS ventional wisdom that the discretization of partial
OF DISCRETE NUMERICAL MODELS differential equations is "an art as much as a science"

(Press et al., 1986). The science that is often lacking is a
The present work employs numerical computation and consistent analysis of the degree to which all reasonable

modeling for a purpose for which it is not often em- discretization schemes satisfy the appropriate laws, or
ployed: as the primary mode of investigating the struc- preferably the identification of one scheme that exactly
ture and consequences of a physical theory. The more satisfies the relevant laws. A particularly attractive cx-
traditional mode of investigation is, of course, to maxim- ample of the latter situation has been given by Visscher
ize the use of analytical mathematics and resort to nu- (1988, 1989). It is a discretization of Maxwell's equations
merical techniques only when the opportunities for in three dimensions, which exactly satisfies the integral
analysis are exhausted, or when it is necessary to evaluate forms of the equations. This is accomplished by assign-
those complicated expressions which express an analyti- ing the various field quantities (charge and current densi-
cal solution. Any particular approach to describing ty, electric and magnetic field) appropriately to the
physical phenomena will be successful only for some sub- centers, faces, and edges of cubic finite-difference cells.
set of these phenomena and will be otherwise ineffective. Unfortunately, we shall see that this ideal situation is not
Because analytical mathematics is such a widely used likely to apply to kinetic open-system models, and some
tool, its domain of success has been extensively explored; trade-offs must be made between the different laws that
this domain consists of those problems with sufficient we wish to satisfy.
symmetry to admit analytic solutions and those problems A systematic way to determine the advantages and
which can be regarded as small perturbations on analyti- limitations of a discrete model is first to identify the

cally soluble problems. For statistical phenomena this physical laws that the model ought to satisfy and then to
generally means thermal equilibrium of analytically tract- evaluate the order of the errors by which the discrete
able systems and very small departures from equilibrium, model fails to satisfy those laws. For the present open-
Numerical simulation techniques that are inherently non- system model, I assert that there are four such laws: (i)
perturbative are better able to address more complex charge continuity, (ii) momentum balance, (iii) detailed
structures and/or far-from-equilibrium states. Because balance of the equilibrium state, and (iv) stability of non-
the study of discrete numerical models is not widely prac- equilibrium states. Energy balance is not included in this
ticed, it is worth examining the principles by which such list because it adds no physics that is not already de-
models may be constructed, using the present open- scribed by momentum balance so long as we neglect
system model as an example. energy-redistributing processes such as electron-electron

A common point of view is to regard discrete numeri- or electron-phonon scattering. Condition (iv) is just the
cal models, such as finite-difference models for partial criterion that we have examined extensively, that none of

Rev Mod Phys, Vol 62. No 3. July 1990
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the eigenvalues of the Liouville operator should have a denote the current on the interval between qi and qj +I by
positive imaginary part. Ji + 1/2. Then if J is to satisfy a discrete continuity equa-

tion exactly we must define Jy + 1/2 to be

A. Continuity equation A Pkk
om+ / kfj +,k +  k

M -To begin the analysis of the irreversible open-system 2 k klpI >0

model defined by Eq. (4.22), let us consider the continuity (7.2)
equation (6.23). First define the discrete approximation
to the local particle density n (q)= (p)q in the obvious The moment of the Liouville equation becomes
way, converting the integral in (6.20) to a sum: an, . 1 I

n-n(qj)=- f k . (7.1) at Aq
k A NP N f

In a discrete model the current density is most naturally 2h Y Y, k'= (
regarded as a quantity that is defined on each interval be- k=1 k= k

tween adjacent mesh points, rather than on the mesh To show that the contribution from the potential opera-
points themselves. Thus the divergence of the current tor V vanishes, let us consider the sum over k first. The
density is a difference taken between adjacent intervals sum can be reordered and then Vik can be expanded us-
and is associated with their common mesh point. Let us ing Eq. (4.14):

p p _ 2 Nq/2 NP 2 kApj'Aq
I Vi;k,k' V, k - I I sin (vj+j,--Vj1 j,) . (7.4)
k=1 k=1 p i'= k=l

Now, this sum will vanish if theory (Oppenheim and Schafer, 1975, Sec. 1.7), where it

N p 2kAj'A is generally regarded as undesirable, and it is mathemati-
sin p q 0 (7.5) cally the same as an "umklapp process" in the context of

I A I solid-state physics. The derivation of the continuity
equation in the continuum case relies on no such proper-which happens if (2NpAp~,Aq )/fi2r, and A., was defined
ty; it follows directly from the antisymmetry of the po-

so as to satisfy this relation. This is the Fourier cor- tential kernel V. In a finite model, however, we must cut
pleteness relation mentioned earlier. Thus the discrete off the sequence of k's at some value, and this will remove
model exactly satisfies the continuity equation some terms that would need to be present in the summa-

an_ tions of the second term of Eq. (7.3) in order to make this

Aq JJ +1/2 -Jj - /2) •(7.6) term exactly vanish by antisymmetry. Thus, if we do not
q rely upon the Fourier completeness property, the best we

The only limit on the precision of this relationship is the can hope for is to satisfy the continuity equation to
arithmetic roundoff error, which is generally several or- O (AP). The error can be made numerically very small by
ders of magnitude smaller than typical discretization er- proper choice of the limiting values of p, but, formally,
rors. the continuity equation would not be exactly satisfied.

Satisfying the continuity equation via the Fourier com-
pleteness relation (7.5) relies upon the special properties
of the (artificial) Brillouin zone created by the q discreti-
zation. To see this, consider k and k' such that B. Momentum balance
Ik -k'l >NP. The term Vj1 kk. should describe the effect
of a short-wavelength component, but because of the am- One begins to encounter the limits of a simple discrete
biguity introduced by the discretization the term is really model when the momentum balance (first moment) equa-
derived from the much-longer-wavelength component in- tion (6.24) is considered. To evaluate the rate of change
dexed by (k -k')modN.. Such an effect is called "alias- of current density, insert the discrete Liouville equation
ing" in the context of signal processing and sampling (4.22) into the definition of Ji + 1/2 (7.2). One then obtains

m Aq (1+, + 1/2l)--- 2 Pk I Vi+;, k'fj + .k'+ 7, Pk I, V; k. 'fj" k' (7.7)
aA rf2 kIp4 .0 k" kIpk >0 k'

where
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n1= - -fJk+i.k± P -f-i,k (7.8)
27rh klPk <0 klpk >0 m

Note that the requirements of consistency in the discretization scheme imply that n, which one might expect to de-

pend only upon the values off at qj, actually depends upon the values off at qj-1 and qj + 1. This sort of spreading

over the domain becomes worse as higher moments are considered. It is probably more correct to r,-gard 11 as a local

function of q and attribute an error of O(Aq) to Eq. (7.7) (because fj+i,k =fjk +Aqaf/aq). Now consider the poten-

tial terms in Eq. (7.7). For simplicity, let us neglect the different j indices required by the form of J and simply evaluate

N N(7.9)
P Pk I Vj; kk'fik= Cot (1):~ ~ 1 i, -V: A~

2Ir*2 k=l k'=i '=

where Eq. (4.14) is again used and the sums reordered as AP A'P ,V
before. Now, in the continuum case [Eq. (6.24)] this ex- 2- 2I Pk , VjM;LHk'fJk
pression reduces to (8v/aq)n. The discrete expression

(7.9) shows a functional of v (the first bracketed factor) V Ap
times n. If we consider only the first term of the sum V j (

over j' and take cota=l/a for small a, we get 2 Aq 2rk'= I
(vj+i-vji-)/ 2 Aq, which is just the centered-difference

approximation to av /q. However, the other terms of exactly. The use of a weighting function in momentum

the sum are not negligible. While trj'/NP is small, the space corresponds to a convolution in position space. If

higher terms just add in more remote approximations to we reinterpret Eq. (7.10) as a continuum expression, a bit
dv /dq. Of course, cota approaches zero much more rap- of manipulation will show that (7.10) can be derived fromav aq.Of oure, otaappoaces eromuc moe rp- a "smoothed" potential uMH(X)

= fdx'wtx -x'1v,(x'),
idly than I/a as a approaches !r/

2 . Thus there is a natu-
ral cutoff of these higher terms so long as j' < N,,2. This where the convolution function w is just a rectangular

helps to explain the significance of the limit of the j' sum- pulse on the interval [ -Aq,Aq). It can be written as

mation of Eq. (4.14). The value of Nq/ 2 was originally w(x)-0(Aq+x)O(Aq -x)/ 2 Aq, where 0 denotes the

chosen for the upper limit of this sum on the purely Heaviside step function. Qualitatively, the effect of this

empirical basis that the results were most credible with scheme is to smooth out any abrupt change in the poten-

this value, and multiples of Nq were investigated because tial so that any such change is distributed over at least

the summation is carried out in position space. However, two mesh intervals. However, the convolution theorem

most calculations have taken NP ozNq, so th--e condi- does not hold exactly in the finite, discrete domain of the

tions are approximately equivalent. The signi; it result present problem. One consequence of this is that the

is that the momentum balance equation (6.L4) is n~ot discretization based upon Eq. (7.10) does not exactly

satisfied exactly by the discrete model. satisfy the continuity equation via the Fourier complete-

The conformance of the discrete model to the momen- ness relation (7.5), but does so only to 0 (AP ), as dis-

tum balance equation can be significantly improved by cussed above.

modifying the form of the discrete potential operator A related idea is to use some form of "data window-

(4.14). However, this must be approached with some ing" (Oppenheim and Schafer, 1975, Sec. 11.4) in the

care. One could, for example, simply discretize the clas- evaluation of the discrete potential superoperator. This

sical form Fo/dp, and if this is done properly, momen- technique is used in the Fourier analysis of finite sets of

tum balance will be exactly satisfied. The problem with sampled data, and in the present context would involve

this approach, of course, is that it discards any multiplying the (v1 +,-v 1. ) factor in Eq. l4.14) by

quantum-interference effects. Mains and Haddad (1988a, some function of j' which decreases to zero for large j'

1988) have suggested a better approach. They recom- (the window function). That is, the weighting would be

mend an alternative expression for VJ;k k . which leads to done in real space rather than in k space. The objective

a model that exactly satisfies a discrete momentum bal- of data windowing is to maximize the fidelity of the

ance expression. The idea is to weight the expression for Fourier spectra derived from a finite set of data to those

Vjkk as of a hypothetical infinite data set by minimizing the
spurious effects associated with cutting off the data at

vIMH sin[2T(k -k')/Np] some finite value. Qualitatively, this would seem to suit
Vikj - 21r(k -k')/NP Vj;k,k . (7.10) the requirements of discrete models of quantum systems.

Invoking the idea that V(q,p) encodes the quantum-

If we now evaluate the first moment of the potential term interference effects, we might also interpret a data win-
we find dowing procedure as an approximate description of the
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continuous loss of coherence as one examines points balance to 0 (A9 ), and the error is independent of AP.
separated farther apart in a dissipative system. This pro- The procedure of solving for the steady-state Wigner
cedure might provide a way to interpolate between the function and then examining the scaling properties of
quantum and classical regimes, whereas the obvious various features of those solutions is, in the absence of a
schemes for doing so with the Wigner function, expand- well-developed and thoroughly checked mathematical
ing in powers of i, are known to fail (Heller, 1976). analysis, the most reliable way to address such questions
These are intriguing possibilities, but the effects of data as the departure from detailed balance. However, if one
windowing on the present sort of open-system models is to compare alternative discretization schemes for a
have not been extensively investigated, particular problem, as is attempted below, it is much

more desirable to be able to determine the order of the

C. Detailed balance errors from a knowledge only of the equations (as was
done with the moment equations), rather than the solu-

The principle of detailed balance is important in tions. In particular, we want to be able to examine a

describing the properties of the equilibrium state. In the discretization of the Liouville superoperator and deter-

particular case of electron devices it assures us that the mine the order of error in detailed balance. At present,

current density is zero when the applied voltage (as mea- no simple criterion has been identified that would permit

sured by the difference in chemical potentials) is zero. such an analysis, However, we may again examine the

The reader may have noticed that the concept of equilib- factors that bear upon this problem.

rium has played no part in the development of the Let us again consider the purely classical example of

present open-system model, and indeed the only place an open system with no internal dissipation. Then the

where the chemical potential can appear is in the particles will follow their classical trajectories

boundary-condition distribution function. In this context [q(t),p(t)], and along those trajectories the distribution

it may not be surprising that the discrete model does not function f will be constant. Detailed balance follows

exactly satisfy the detailed-balance condition. This was from the presence of a time-reversed trajectory
discovered by Jensen and Buot (1989a), who noticed that q( -t), -p( -t)] for any given trajectory. Because the
if the steady-state (V) curves were computed for a energy is constant along a trajectory, the density f(1,p)if te sead-stae JV) urve wee cmputd fr a at an outflowing boundary will be equal to the corre-
structure lacking inversion symmetry (having unequal at a nfiowing bondary w be equa l to thebarrier widths), a non-negligible current density was ob- sponding infiowing density f (1,-p) if, and only if, the

barrer idts),a nn-ngliiblecurentdenitywasob- distribution functions in the two reservoirs are identical
tained at zero bias. Because it is precisely detailed bal- functions ine tw erirs are ncalancewhih ladsus o epec zeo crret i eqiliri- functions of energy (i.e., in equilibrium). If we focusance w h ich leads us to expect zero cu rren t in equilib ri- up n a d fe nt l e e m t of h e rj c o y , h e o di
um, the spurious equilibrium current is a measure of the upon a differential element of the trajectory, the condi-
violation of this condition.

Given the observation that the discrete model does not
exactly satisfy detailed balance, we should determine
whether this is a consequence of the discretization or of 6000 i I

the open-system boundary conditions themselves. A sim- / 0 1
ple way to do this is to compute the zero-bias current 5000 I

density for an asymmetric RTD structure using varying /

mesh spacings Aq and A,. This was done for a structure " 4000
identical to that described in Sec. V, except that the /

widths of the barriers were 3.4 and 2.3 nm. It was found o /

that J(0) was essentially independent of A,, and 3000 /

J(O)=O(Aq), as illustrated in Fig. 23. Thus the viola- - /

tion of detailed balance is entirely a result of the discreti- _ 2000
zation, and the continuum formulation will apparently /

satisfy the detailed-balance principle. 1000 ,'

Let us examine this issue in more detail. To begin, let /

us see what detailed balance implies about the equilibri- 0
um density operator or Wigner function. Because the 0.0 0 0 0 0 1 1.2 1.4
processes occurring in equilibrium must be reversible, the

density operator must equal its time-reversed value Aq (nm)

PeqA*Pq, or peq(X,X') must be purely real. This implies FIG. 23. Violation of the principle of detailed balance in the
that the equilibrium Wigner distribution must be a sym- discrete open-system model. The current density calculated for
metric function of p. Thus an alternative measure an asymmetric structure in equilibrium is plotted versus the
of the departure from detailed balance is mesh spacing used in the calculation. The results show that the

([feq(q,p)-feq(q,-p)] 2 )' /2 . Evaluating this measure current density (which measures the departure from detailed
for computed feq with various mesh spacings leads to the balance) is of O(Aq ) and is thus a result of the discretization,
same conclusion: the irreversible model violates detailed not of the open-system boundary conditions.
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William R. Frensley: Boundary conditions for open quantum systems 779

tion that there exists a time-reversed trajectory can be ex- tor has nonzero elements adjacent to the boundaries of
pressed as the system. These might be removed by including the in-

phomogeneous terms, but the meaning of an inhomogene-
(I /iA)(q 1 ,p 1;q2,P2) U-(/i)(q2, -P2;q1, -p ) , ous term in a commutator is far from clear.

(7.12) The connection between detailed balance and reversi-
Swebility or Hermiticity suggests the following conjecture:

which becomes . =J_ when transformed back to the that it is impossible to satisfy exactly both detailed bal-
density-matrix representation, leading to the unsurpris- ance and the stability condition (irreversibility) in a mod-
ing conclusion that time reversibility is equivalent to the el with a finite number of degrees of freedom (such as a
Hermiticity of Z. In fact, the irreversible model (4.19) bounded, discrete model). That this is possible in a mod-
satisfies condition (7.12) if we include the boundary terms el with an infinite number of degrees of freedom, as in un-
(4.20). It would appear appropriate to include these bounded or continuous models, is the thrust of the con-
terms in the detailed-balance test, whereas we neglect ventional theories of irreversibility. If this conjecture is
them in the stability analysis. However, this argument correct, this is a significant limit on the accuracy achiev-
leads to the conclusion that the model ought to satisfy able with discrete open-system models.
detailed balance exactly.

A further consideration of the classical case suggests
that the departure from detailed balance might be trace-
able to discretization errors in the classical trajectories. D. Comparison of discrete models
That is, when we restrict the distribution function to a
discrete mesh of points, a particle cannot exactly follow Table I summarizes the results of this analysis of the
the proper trajectory, and the time-reversed trajectory discrete open-system model. It also contains results for
might not exactly balance it. The way to correct such a other discretization schemes that have been used forsituation is to adopt the Lagrangian coordinates dis- similar calculations. The schemes included in the table
cussed in Appendix C. Then the upwind difference are, first, the present upwind-difference approximation tocussd i Apendx C Thn te uwin difernce the 'T" operator, dcnoted "'Upwind." Second is the
would be applied to the directional derivative along a tra- te i ertor dcot indstu ed s the
jectory and would exactly satisfy time reversibility,. etrddfeec pr~mto tde yine nHeoer thisndo o t exlp stinfy cases suchasint- Buot (1989a) to resolve the problem of detailed balance.H o w e v er, th is d o es n o t h e lp in ca ses su c h a s q u a n tu m - I h s a p o i a i n t e k n t c e e g u e o e a omechnicl tnneing inwhic trjecoris cnno be In this approximation the kinetic-energy superoperatorm echanical tunneling, in w hich trajectories cannot be 7 ,1 f r c n e e if r n e e o e
defined. Discretization errors in the trajectories would (for centered difference)becomes
presumably lead to the conclusion that both Aq and A. rctr Pk
contribute to the error, contrary to what has been ob- (7,131 2mAq + -- 7.13.

served. If the error were of the form O(A )+O(AP and q

the terms had coefficients of different magnitudes, the nu- The third column presents an analysis of a centered-
merical experiments might easily have overlooked the difference approximation with upwind differencing ap-
weaker dependence. plied only at the outflowing boundaries. This is the

Another way to view the problem of detailed balance Ar- - 0 limit of the Lax-Wendroff discretization (with
in a completely quantum-mechanical context is to note upwind differencing at the boundaries) used by
that the equilibrium distribution should satisfy the Bloch Kluksdahl, Kriman, Ferry, and Ringhofer (1989). The
equation (6.30). The stationarity of such a distribution continuous time limit is invoked in the present analysis to
under time evolution by the Liouville operator would fol- remove any artifacts of time discretization and thus
low from [1,/I,. ,]=0. We have noted that this is evaluate this scheme on the same basis as the others.
necessarily true in a closed system, but it is not true for This yields the superoperator rcub, (for centered,
an open-system model. In the present case the commuta- upwind boundary):

TABLE 1. Order of errors in discrete open-system models.

Momentum Detailed Stabiit%.
'T discretization Definition Reference Continuity balance balance max In0.

Upwind Eq. (4.19) a rE[] O(Aq)+Ei[V ]  O(Aq) --O A
Centered Eq. (7.13) b Cn['V] E,(V] + O A.% ')

Centered upwind boundaries Eq. (7.14) c O(Aq) ±Ec[ ] O(Aq)±Ei[ V] -O(Aq A,
Density matrix Eqs. (3.10),(3.14) d 0 0 0 +OiA, 1)

'Frensley, 1987a.
hJensen and Buot, 19 89a.
'Kluksdahl et al., 198q.
dFrensley, 1985.

Rev Mod Phys, Vol 62. No 3. July 1990



780 William R. Frensley: Boundary conditions for open quantum systems

18 ' L8 f forpk <0 andj >1

,7cub) - Pk 8, .+,.'J d for Pk <0 and j =1
jk;jk'- mA [, _ , for >0 andj <N (7.14)I ,j ' - 16 j - ,j , f r P k > 0"n ,

|jb-j-_ I, for Pk >0 and j =Nq

The last column of Table I summarizes the time- butions with these schemes. Both of them possess at
reversible model based upon the density matrix that we least one spurious mode whose eigenvalue is very close to
explored in Sec. III. zero, which in regions of constant potential is of the form

The errors in the continuity and momentum balance coslrjAq, so that its sign alternates between adjacent
relations were determined by analysis of the discrete mesh points. If one attempts to solve for the steady-state

equations in the manner described above. These errors distribution, a relatively arbitrary fraction of this mode is
include contributions from the potential superoperator Y incorporated into the solution, rendering the results
as well as from the kinetic-energy superoperator 'T. Be- meaningless. Nevertheless, the considerations previously

cause the different discretization schemes that can be discussed strongly suggest that the discretization [Eq.
used for YV are independent of those for 'T, the error con- (7.14)], at least, probably violates detailed balance to the
tributions from V (denoted as Ei[fVI) discussed in Sec. same order as the upwind-difference scheme. The status
VII.B are tabulated separately in Table II. The density- of the centered-difference scheme (7.13) is more prob-
matrix model of Sec. III is set up so as to exactly satisfy lematical. Jensen and Buot (1989a) obtained improved
the continuity and momentum balance equations. This is results in the sense of a small equilibrium current with
possible because the Y, -, superoperator can be evaluated this scheme, but it does not seem to be particularly dis-
in closed form when applied to the density matrix in real tinguishable from the others on the basis of the symmetry
space, but must be approximated by Eq. (4.14), (7.10), or property (7.12) or its commutator with Y-, ,. The

some similar expression when applied to a Wigner func- density-matrix approach is presumed to satisfy detailed
tion. balance exactly because it is time reversible.

The centered-difference form (7.13) also exactly The stability condition is, of course, absolutely essen-
satisfies the continuity and momentum balance equations, tial for a useful model. It is expressed in Table I by the
if we associate the current density J with the mesh points scaling order of the greatest imaginary part of an eigen-
rather than with the intervals as in Eq. (7.2). In the case value. The scaling properties of the different discretiza-
of the centered, upwind boundary scheme (7.14), the tions were investigated by a procedure similar to that il-
change in the discretization of the gradient necessarily lustrated in Fig. 23. Both the upwind-difference and
introduces errors of O(Aq) into all the moment equa- centered-upwind boundary schemes are stable, as we ex-
tions. It can be argued that such errors are in some way pect (all imaginary parts are negative), but the scaling is
less significant because the occur only adjacent to ti-- different. This is illustrated in Fig. 24, which shows the
boundaries, but a central lesson of the present analysis is eigenvalue spectrum for the centered-upwind boundary
that the boundary terms affect the entire solution, and scheme for the same structure used previously. While all
their influence is not localized to the regions near the the eigenvalues lie in the lower half-plane, they are

boundaries. clustered much nearer the real axis than those of the
The considerations that bear upon departures from de- upwind scheme illustrated in Fig. 9. The centered-

tailed balance have been discussed above. The approach difference and the density-matrix schemes are not stable,
described, studying the scaling properties of the equilibri- as they possess eigenvalues with positive imaginary parts.
um solutions to the Liouville equation as illustrated in (It should be noted that the specific results obtained for
Fig. 23, does not work for the centered-difference (7.13) the centered-difference scheme are somewhat suspect.
or centered-upwind boundary (7.14) discretizations be- The A 5 dependence is suspiciously close to that of the
cause one cannot directly solve for the steady-state distri- total number of arithmetic operations required to diago-

nalize the operator, A. , so therc is a strong possibility

that what was observed here is just the cumulative effect
TABLE I. Error terms due to discretization of the potential: of roundoff errors.)
E, JY].In summary, no model exactly satisfies all the condi-

tions one would desire. One must therefore decide which
Continuity Momentum model to use on the basis of what is most important for a

.. dsce.. . Rgiven application. The information in Tables I and II

Eq. (4.14) a 0 O(l) provides the basis for making such a decision. The anal-
Eq. (7.10 b O )0 - yses that are summarized in the tables, while somewhat

'Frensley, 1987a; Kluksdahl et al., 1989. tedious, will be useful at two different levels. The first is
"Mains and Haddad, 1988c. as a summary of the properties of the different discretiza-
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1.0 .... .... helps to clarify the roles of superoperators generated by

0.8- the commutator and anticommutator of a physical ob-
_ _ servable. It was demonstrated that, at the kinetic level,

0.6- only the commutator superoperators should acquire
- non-Hermitian parts to model irreversible phenomena.

0.4- Anticommutator superoperators remain Hermitian and
0.2- are used to evaluate expectation values.

- Some of the more mathematical issues concerning the
0.0 X X, K X ,2 properties of the present open-system models remain un-

X X: resolved, particularly the question of positivity of the re-- -0.2- X x _
x - 0X _ suiting Wigner distribution functions. However, the re-

Sxc
-0.4- x suits obtained by applying these models to the resonant-

- tunneling diode demonstrate the usefulness and credibili-
-0.6- - ty of this approach.
-0.8 This work is certainly not an exhaustive examination

of the theory of open systems. Undoubtedly, many more
-1.0 ... ... . ........ I approaches to the subject can be formulated. However,

-2 - 1 0 1 2 one should note that the significant behaviors of an open
Re(X) system involve a strong coupling between the system and

its environment and large deviations from equilibrium

FIG. 24. Eigenvalue spectrum resulting from the discretization within the system. It thus appears unlikely that pertur-

(7.14). This discretization results in a stable model. bative approaches will contribute much to the theory of
such systems. Other analytic approaches will be effective
only in cases displaying some exceptional symmetry (and

tion schemes studied here. At a more general level the of course the present definition of open system rules out
present analyses provide an example of the sort of study translational symmetry). It thus appears that numerical
required to make sense of the multitude of discretization models such as those examined here will probably be the
schemes for a given physical problem. mainstay of such investigations.

Vill. CONCLUSIONS Note added in proof. Three recent results in this field
have come to the author's attention: Jensen and Buot [J.
Appl. Phys. 67, 2153 (1990)] have studied a second-order

The central conclusion of the present work is that an differencing scheme for evaluation of the Wigner func-
open system, in the sense of one that exchanges particles tion, and they find that this improves the results for the

with i's environment through spatially localizable inter-
resonant-tunneling diode in several respects. Govindan,

faces, is necessarily irreversible. The reasoning behind rubn and e ng hve rep t a onse
this conclusion is a reduetio ad absurdurn argument. We Guiadd oghv eotda pnsse
this c sn is a predcuclad aeversblerdu f ant e boundary condition for the density matrix (in real space)
have seen that a particular reversible model of an open which appears to avoid the instabilities discussed in Sec.
system possesses unphysical instabilities. The mathemat- . The boundary condition involves the specification of
ical properties underlying these instabilities, namely the bohtedniyadhecrn.RgseRaaoiad

exisenc of ompex egenalue ofnon-ermtiansu- both the density and the current. Register, Ravaioli, andexistence of complex eigenvalues of non-Hermitian su- Hess have developed an improved traveling-wave

peroperators and the requirement that these occur in boundary-condition scheme for the time-depndent

conjugate pairs due to time-reversal symmetry, are Schr6dinger equation. The latter two works will appear

sufficiently general that we should expect such instabili- i h e Proceedin The W orks n aopat
tie inanyrevrsblemodl. husphsicllyaccptale in the Proceedings of the Workshop on Computationalties in any reversible model. Thus physically acceptable Electronics. University of Illinois-Urbana, May 21-22,

models of open systems must be inherently time irreversi- 1990 , ed ite Hs i. l Ueb n, a 21R2i,
ble. 1990, edited by K. Hess, J.-P. I eburton, and U. Ra% aiolible. tlyr owlM ,i rs)

A particular class of irreversible open-system models (Cluyer, Norwell, MA, in press).

was presented, and the stability of the resulting solutions
was demonstrated. The irreversibility of these models ACKNOWLEDGMENTS
follows from making a distinction between particles
entering and leaving the system. Similar ideas, generally The author would like to acknowledge helpful discus-
applied in the time domain, are the basis for the estab- sions with J. R. Barker, R. T. Bate, C. D. Cantrell, D. K.
lished theories of irreversibility and dissipation. The Ferry, K. Hess, K. L. Jensen, N. C. Kluksdahl, A. J.
present work demonstrates that spatial boundary condi- Leggett, R. Lodenkamper, J. H. Luscombe, R. K. Mains,
tions can be used to introduce irre6.:rsibility in a way F. 1. Narcowich, W. P6tz, M. A. Reed, and L. E. Reichl.
very similar to that by which temporal initial conditions This work was supported in part by the Office of Naval
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APPENDIX A: SELF-CONSISTENT POTENTIAL reference and the externally imposed it then uniquely
OF A TUNNELING STRUCTURE determine VH. Strictly speaking the Thomas-Fermi ap-

proximation is only an equilibrium approximation. How-
The semiconductor heterostructure used in the ever, in some structures, such as the present single-

analysis in Sec. 1.B consisted of an undoped 3.39 nm (12 barrier device, one can identify regions in which a local
unit cells) layer of Al 0 3Ga0 7As embedded in GaAs crys- quasiequilibrium ought to hold. In such cases one can
tal doped such that the mobile-electron density was obtain useful results for the nonequilibrium case by as-
6X 1017 cm -3, and the temperature was 300 K. (This suming that the chemical potentials differ from one re-
particular structure was chosen to provide a clear gion to another, as illustrated in Fig. 1.
demonstration of the failure of the standard tunneling To evaluate the self-consistent potential within the
theory.) The calculations were done for a bias of 0.2 V conventional independent-electron tunneling theory, we
(: 8k T) applied to the structure. need to define precisely the (mixed) quantum state of the

The initial approximation for the self-consistent poten- system. The fundamental assumption of tunneling theory
tial was obtained from a generalized (to finite tempera- is that the electrons will be found in the eigenstates of the
ture) Thomas-Fermi screening approximation. At its Hamiltonian (generally un-normalizable scattering
most fundamental level, the Thomas-Fermi approxima- states), and the probability of occupation of the left- and
tion can be viewed as an expression for the Wigner distri- right-incident states is given by the different Fermi distri-
bution function: butions of the respective contacts. We may summarize

these assumptions by writing a density operator for the
f (x,k)= 1+e~T(x 'kI+ ' ' x - l (Al) system

where T(x,k) is obtained by taking the kinetic-energy p(x,x')= f dEEfI(E -1u1)0b(Exhkr(Ex')
term of the Hamiltonian in the neighborhood of x, ex-

tending this form over all space, and taking the expecta- + f dE (E -ti,)0,(Ex)
tion value of the resulting operator on the plane-wave 2rrs,(E)
state k). This typically gives T(x,k)= 2k 2/2m *(x),
where the effective mass m* can vary with position, as Xtr(E,x , (A6)
discussed in Appendix E. Integrating over all momenta where vi, are the asymptotic potentials to the left and
gives the more familiar expression (Blakemore, 1982) right, and st,,(E) is the velocity of an electron of energy E

at the respective boundary. Here f, is the Fermi-Dirac
x)=N,.7/.2 3[lA-V(x)]}, (A2) distribution function integrated over the transverse mo-

where N, =2(m*/27rh2f1) 3 / 2 is the "effective density of menta:
states," and ,71/2 is the Fermi-Dirac integral of order f 1 (E) = (m */rh2f3)ln( 1 +e -E) . (A7)
The potential v can be separated into a Hartree potential
1,;; and a "heterostructure" potential v, which describes The Vi,, are the solutions of Schr6dinger's equation in an
the heterostructure band offsets: effective-mass approximation,

1 ( x ) : t,// ( x ) = V , ( x ) .(A 3 ) ji 2 a I a h v = i M(A3) -= E___, (A8)
2 ax m*(x) xThe Hartree potential satisfies Poisson's equation, with unit incident amplitude from the left or right, re-

-V'eV,,=e 2[n (x)-N(x) , (A4) spectively. Using Eq. (A6) we can evaluate any physical

where Nd is the background positive charge density (ion- observable of the tunneling system, although, in the

ized donor density). Inserting Eqs. (A2) and (A3) into literature, the content of (A6) is usually expressed only inizeddonr dnsiyt. nsetin Eq. (A) ad (3) nto an equation for the current density. However, to evalu-
IA4) produces a Poisson equation with a nonlinear source ateqthe fonite poent eneed oevau te

term, which is readily solved in a finite-difference approx- ate the self-consistent potential we need to evaluate the

imation by a multidimensional Newton iteration tech- electron density, which is simply n(x)=p(x,x). Insert-

niqueing this into Poisson's equation (A4) and again applying

tions for Eq. (A4) are obtained from the requirement that the condition (A) at cach boundary, we obtain the po-
the y,,em symtotiall aproah chrgeneuralty, tential shown by the dashed line in Fig. 1. This potentialthe system asymptotically approach charge neutrality, is clearly unphysical, as discussed in the text, because in-

S Nd elastic processes are neglected. A proper description of
C= i- -. i,, , (A5) such processes requires a kinetic theory.

The quantum-kinetic calculations shown in Fig. 3 were
with all quantities evaluated in the appropriate asymptot- performed by solving the steady-state kinetic equation
ic region. In practice, these boundary conditions are ap- (4.27) and Poisson's equation (A4) self-consistently, again
plied at fixed locations sufficiently distant that charge by a multidimensional Newton iteration scheme. The
neutrality is well satisfied kee Fiv I) Note that the electron density n in Poisson's equation was obtained
reference energy for t', may be chosen arbitrarily; this from the Wigner functi'rn wiing Eq. 17.1). Phonon
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scattering was included by adding the Boltzmann col- trix is and remains diagonal in the basis of eigenstates of
lision operator described in Appendix F, for both the Hamiltonian,
longitudinal-optic and acoustic phonons, to the Liouville (B31)
operator used in Eq. (4.27). The calculation of Fig. 3(a) p(xxt)- t
assumed fixed boundary distributions [Eq. (5.1)]. The
calculation of Fig. 3(b) assumed displaced equilibrium where P,(t) is the probability of the system to be in state

boundary distributions, to take into account the trans- i. The master equation is then

port processes in the contacting layers (Mains and Had- dPi / d t  Wj P j ( t ) - W Pt] (B2)
dad, 1988c). These distributions were just Eq. (5.1) with /
argument Pk-P 0, where po = - la emav/ a x, pe is the
electron mobility (taken to be 5000 cm 2 V - 1 s- I), and the where the W 0 are the golden-rule transition rates. Con-

electric field was evaluated at the respective boundary. sider transitions from a state i to a state j which have

This shifts the distribution function so that a greater den- different spatial distributions: 10i(x)12 1 I'(x)L. Then

sity of electrons enters on the upstream side and a lesser the rate of change of the density is

density enters on the downstream side, which makes the .P' aPj
screening of the electric field more effective. atp(x,x;t)-i (x)12 + at (x)l 2

Other self-consistent calculations of far-from-
equilibrium tunneling structures have focused upon the =Wji P,(t)- WjP 1(t)]
double-barrier resonant-tunneling diode because of its X [ I 0i (x) I- I 0i(x)12] (B3)
greater technological significance. Cahay et al. (1987)
performed a self-consistent Schr6dinger calculation, as However, i and j are eigenstates of the Hamiltonian,
described above. However, they assumed a device struc- which means that (iJ1i) and (jIJIj) are constant (for
ture with undoped spacer layers on either side of the dou- scattering states) or even zero (for bound states). In ei-
ble barrier. The contact potentials of the doped-undoped ther case,
junctions created an additional energy barrier which, by
confining the electrons, helped to enforce charge neutrali- V1 ( iJi =V1 (jIJ Ij) =0 . (B4)

ty, and thus the unphysical effects described above were Now, the rate of change of the density will be zero if ei-
avoided. If the undoped spacer layers had not been ther of the two bracketed terms in Eq. (B3) is zero. In
present, an unphysical potential would have been ob- thermal equilibrium the first term is zero by the principle
tained. of detailed balance, but away from equilibrium it is. in

Potz (1989) also performed a self-consistent general, nonzero. The second term will be zero if the
Schr6dinger calculation. In this case the unphysical re- probability distributions of the eigenstates i and j are
suits were avoided by modifying the definition of the elec- identical. This happens in only a very few cases, most
tron ensemble from (A6) to one in which the notch states notably for the plane-wave states of a free particle.
were weighted with the Fermi distribution of the Thus the assumption that the density matrix has the
upstream electrode, in effect assuming a high rate of in-elaticproesss t fil tes sttes A ispace ditriu- form (BI) for far-from-equilibrium systems will lead, inelastic processes to fill these states. A displaced distribu- general, to a violation of the continuity equation.

tion function as described above was also used in this cal-
culation, but the drift momentum was chosen so as to
satisfy charge neutrality, rather than to approximate APPENDIX C: BOUNDARY CONDITIONSohmic conduction.APEDX:BON RYC DIOS

ohmiccondution.FOR LAG RANG IAN-VAR IAB LE APPROACHES
Kluksdahl et al. (1989) performed a self-consistent ki-

netic (Wigner-function) calculation of the type described Broadly speaking, there are two ways to set up a trans-
above, with a relaxation-time approximation for the col- Broblem: there ar n ways he cor-lision operator. The results showed an unphysically large port problem: the Eulerian approach, in which the coor-

lisin oeraor.Theresltsshowd a unhyscaly lrge dinates are fixed in the reference frame of the observer;
electric field at the upstream boundary. Similar results dte ar fi n ahere ce frameiof the observeand the Lagrangian approach, in which the coordinates
were obtained by the present author (Frensley, 1989a, are fixed in the reference frame of the transported fluid.
1989b) from a kinetic model lacking the collision term.
As in the single-barrier case, the inclusion of phonon col- Her w fues on themulian apoah
lisions and displaced boundary distributions led to more Hover a er of tions of quantum-credible results (that is, more complete screening of the transport theory are expressed in terms of Lagrangian

variables. These include the center-of-mass approach of
field) for the self-consistent potential (Mains and Haddad, Lei and Ting (1985) and the quantum Langevin-equation
1988c; Frensley 1989a, 1989b). approach of Hu and O'Connell (1987). The accelerated

APPENDIX B: VIOLATION OF CONTINUITY basis states studied by Krieger and lafrate (1986) adapt
IN THE PAULI MASTER EQUATION the Lagrangian variables to pure-state quantum mechan-

ics. It appears that none of these approaches has vet
The Pauli master equation (see Kreuzer, 1981, Chap. been applied to an open-system problem in the present

10) is derived under the assumption that the density ma- sense, so there has been no analysis of the effects of

Rev RAod. Phys. Vol. 62. No, 3. July 1990



784 William R. Frensley: Boundary conditions for open quantum systems

boundary conditions within the Lagrangian approaches. in response to the nearby density.
Moreover, it is not at all clear that such approaches are The discussion of Monte Carlo algorithms and bound-
well adapted to the description of tunneling, where there ary conditions brings out an important point: The num-
is no classical trajectory (although in this connection one ber of particles in an open system necessarily fluctuates.
should note the work of Jensen and Buot, 1989b, in While I have not addressed fluctuation phenomena in the
which the trajectories in a resonant-tunneling diode were present work, a more complete description should deal
inferred from a solution for the Wigner function). with such effects.

In the classical case, however, much of the work deal-
ing with open systems (and most of the work treating APPENDIX D: BOUNDARY CONDITIONS
electron transport in nonuniform systems) has been cast FOR SCHRODINGER'S EQUATION
in terms of the Lagrangian variables. This includes both
deterministic approaches, such as that of Baranger and The application of Schr6dinger's equation to an open
Wilkins (1987), and stochastic approaches, such as the system in the present sense is a large part of the formal
widely used Monte Carlo technique (Jacoboni and Reggi- theory of scattering. The traditional approach is to ex-
ani, 1983; Castagne, 1985; Constant, 1985; Reggiani, pand the wave function in a set of traveling waves, at
1985). If we consider the boundary conditions in such least in the asymptotic region. This implicitly sets the
approaches, it becomes apparent that the "inflowing" boundary conditions employed in the analysis. With the
boundary conditions [Eq. (4.7)] will occur quite naturally. present interest in the quantum-transport properties of
In the approach of Baranger and Wilkins the Lagrangian (often complex) fabricated structures, purely numerical
variables define the mean trajectories of the particles, so techniques for solving Schr6dinger's equation have be-
one must specify the initial conditions on the trajectory, come more important. In these techniques one has a
which is the value of the distribution function at the direct representation of the wave function as a complex-
point where the trajectory enters the domain. Thus the valued function of position, typically on a discrete basis
boundary conditions are completely equivalent to Eq. (using finite-difference or finite-element techniques, for
(4.7). example). In this situation, the appropriate boundary

In the case of the Monte Carlo technique the boundary conditions must be explicitly specified, and the proper
conditions are determined implicitly by the details of the choice of boundary conditions is a prerequisite to obtain-
algorithm used in the calculation, and such details are ing any meaningful results.
often omitted from the published reports. To understand Let us first consider the steady-state case in a one-
the relationship between the algorithm and the boundary dimensional system extending over the interval 0 "' x < I.
conditions, let us consider the algorithms described by In general, we seek wave functions corresponding to trav-
Lebwohl and Price (1971) and Hockney and Eastwood eling waves incident from either the left or the right.
(1981) (which is also described by Castagne, 1985). Any These states will include a reflected component, which
electron leaving the domain of the Lebwohl and Price appears at the same boundary as the incident wave, and a
calculation is immediately replaced by another electron transmitted component, which appears at the opposite
entering randomly from either contact, with an initial boundary. For example, for an eigenstate incident from
momentum chosen from a thermal distribution. Thus the left, we have
the number of electrons in the system is fixed (and the
fact that this leads to simpler and more efficient pro- O(x) = Ae +Be '' for x <0 (Dl)
grams is the motivation for the Lebwohl and Price ap-
proach). A distribution function evaluated with this al- ib(x)=Ce'  for x >/ . (D2)
gorithm will satisfy boundary conditions of the form We know the value of A (typically A = I ), but we do not
(4.7), but the values of the boundary distributions will not know the value of B or C. A straightforward way to
necessarily remain fixed, as they depend upon the rate at evaluate 0 is temporarily to assume C = 1, from which
which electrons impinge upon the contact. To view the we obtain the initial conditions 61) I and
problem another way, the same algorithm would be ob- ih(I)/ax =ikl. The steady-state Schrodinger equation
tained from a model in which the system was assumed to may then be integrated from x =l to x =0, and the solu-
be periodic, but which had a very strong scattering pro- tion may then be normalized so that A = 1.
cess located at that plane where the system closed upon A more elegant approach is the quantum transmitting
itself. Thus this approach really describes a closed sys- boundary method (QTBM) of Lent and Kirkner (1990).
tem, and the fixed number of particles within the system The essence of this approach is to apply mixed boundary
is an indication that the system is actually closed. A tru- conditions at each boundary. The mixed boundary con-
ly open system results if the particles entering the domain ditions involve fixing the value of a linear combination of
are chosen by an independent stochastic process, and the the wave function and its gradient. At the left-hand
resulting distribution function would then satisfy Eq. boundary,
(4.7) with fixed boundary distributions. The algorithm
described by Hockney and Eastwood (1981) is almost of il(0) = A +B , (D3)
this form, though the rate of particle injection is adjusted o,(O) - ad/lx 1)= iko( A - B) . (D4)
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Solving for A we obtain boundary condition, which I have not tested in a practi-
=I [ 0(0) - it'(0)A] (D5) cal computation, but which has the pedagogical advan-

tage of explicitly displaying the non-Markovian nature of

A similar expression for the incident amplitude at the the problem. Suppose that we are implementing a

right-hand boundary (let us call it D) may be readily de- discrete time-integration scheme with step size A, and

rived: that we wish to apply a Neumann spatial boundary con-
dition at x =0. Then we need a way to determine the

D= [i(l)+ik'(1)/ki] . (D6) value ofao/ax at the next time step. We Fourier trans-

Equations 05) and (D6) are the QTBM boundary condi- form Schr6dinger's equation and solve for k to obtain

tions. They define an implicit relationship between 0b and ik =iV2m (iw-v)/01. (DI0)
0)' and thus they must be solved along with Schr6dinger'sequ atind tse. They mus beaoedaong itha numringes aIn the case of the reflected waves propagating out of the
equation itself. This is readily done in a numerical ap-

proach in which the Schr6dinger equation is approximat- x =0 boundary we would choose the negative sign on the

ed by a set of algebraic equations: One simply adds (D5) square root. Now suppose that we approximate the

and (D6) to the set and solves them simultaneously. The right-hand side of Eq. (D10), over an appropriate range

QTBM is readily extended to two-dimensional problems of energies, by a polynomial in -- i w:

(Lent and Kirkner, 1990) and to problems involving com- N

plex energy-band structures that require more than one ik ! a,, iw)"

basis function per unit cell (Frensley and Luscombe, n=0

1990). Note that the QTBM boundary conditions are en- Inverting the Fourier transform, we obtain an expression
ergy dependent, this dependence being implicit in the for the gradient of 0:
dependence of Eqs. (D5) and (D6) on k 0 and k t . N NV

If the problem is time dependent (typically because the "ax (0,to)= T a, F0(Ot°)j I b, 4,t(O-mA ) ,
potential varies with time), the problem of boundary con- a =0 at 0 m=0

ditions is much more complex. If we start with the (Dil )
knowledge that the electron in question is in a particular where the latter expression is a finite-difference approxi-
eigenstate of the Hamiltonian H (0) at t =-0, at some later mation to the differential operator, and we approximate
time t when the potential has changed perceptibly the this operator using only the values of 4, at times prior to
electron will not in general be in an eigenstate of H(t), t o because those are the only known values. (Thus the
but will be in a superposition of such eigenstates. Let us time-reversal symmetry is broken.) Note that Eq. (Dl )
focus our attention on the boundary at x =0 and assume explicitly demonstrates the dependence of the boundary
that the potential does not vary in its immediate neigh- condition on the prior history of the system and thus
borhood. The wave function with unit incident ampli- shows its non-Markovian character. The finite-difference
tude will be of the general form coefficients b,, may be obtained from the a. by expand-

(x,t)=e ikx-()I+46(x,t), (D7) ing 4(0,t 0-mA,) in a Taylor series. One thus obtains
the set of equations

and all we know about the reflected wave 4(x,t) is that it
is a solution of Schr6dinger's equation and all of its mo- a N - 12)
menta should be negative. (However, a momentum-space m=0 n !
expansion of (h is not feasible because we wish to deal
only with 4 over a small range in x.) Mains and Haddad which must be solved to find the bi.
(1988a) have reported calculations of the transient The essence of this scheme is that we use the previous-

response of a resonant-tunneling diode using ly calculated values of the wave function at the boundary
to attempt to predict the next value of the gradient. This

d~x,t)=B(x,t)e " -
kx

- ' 
, (D8) is a particular example of linear prediction (Makhoul,x t1975). It also illustrates a general property of derivations

with B(x,t) assumed to be slowly varying in space and of irreversible phenomena in quantum mechanics: When
time. Inserting Eq. (D8) into Schr6dinger's equation one attempts to remove (or at least ignore) the effects of
gives some of the degrees of freedom in a system (in this case

aB Ak aB i h a2B the spatial locations outside the boundary), they reassert
-= m -ax + 2  (D9) themselves in the time domain, in the form of non-

mt m x 2m dX
2  Markovian terms (Zwanzig, 1964).

Mains and Haddad used the first-derivative term of Eq.
(D9) to update the value of B(O,t) (Dirichlet boundary APPENDIX E: POSITION-DEPENDENT
condition) in a time-integration procedure. This amounts EFFECTIVE MASS
to looking a short distance into the domain to determine
what is coming out. In the semiconductor structures that originally

Let us consider another scheme for determining the motivated this work the charge carriers whose motion we
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seek to describe are really quasiparticles, whose proper- tion when the magnitude of the change in m * is small, as
ties are determined by the energy-band structure (or is typically true of equivalent energy bands in closely re-
energy-momentum dispersion relation) of the semicon- lated materials. When the discontinuity is of a larger
ductor material. These carriers usually occupy states magnitude, as when inequivalent bands are involved, one
near an extremum of a band, and thus for the simpler probably needs to solve the multiband problem explicitly
cases of interest the band structure can be approximated and infer the form of the effective-mass equation from the
as results (see, for example, Grinberg and Luryi, 1989).

E (k)o, +('/2m * )(k - k0 ) , (El) We can obtain different discrete approximations to
(E3) depending upon where we assume the heterojunction

where v, is the energy at the edge of the band and is just to be actually located with respect to the mesh points.

the heterostructure potential used in Appendix A, k0 is The most consistent scheme is to assume that the junc-

the wave vector at which this extremum occurs, and m * tion is located midway between two adjacent mesh

is the "effective mass" that characterizes the curvature of points. The discrete Hamiltonian (3.9) then becomes

the dispersion relation. This dispersion relation may be (Mains, Mehdi, and Haddad, 1989)

modeled by the effective-mass Schr6dinger equation i_ 2  I__ +1 2 1 +

ihaqV/at=-(h2/2m*)V2 ,+(Vs-H)4 , (E2) m* m* Mi*+ I+ ' (E4)

where vH is the Hartree potential, which is assumed to be Hi i + I Hi + , I
slowly varying. The wave function 4T in Eq. (E2) is strict- H 4A2 M mi*+ 1
ly an envelope function for the true wave function. In
the Wannier-Slater approach to effective-mass theory which was used in all of the tunneling calculations
(Slater, 1949), %V is a discrete function (defined on the lat- presented here.
tice points) giving the amplitude of the Wannier function If we use Eq. (E3) to construct the kinetic-energy su-
at each point [though T is approximated by a continuous peroperator 'T -, how is the form of this superoperator
function to derive the differential equation (E2)]. In the (in the Wigner-Weyl representation) affected? We might
approach of Luttinger and Kohn (1955), T' is a continu- hope that a simple expression would result, such as
um but band-limited function, which is multiplied by a ? _ n(q)- 1P1 + (E5)
perfectly periodic Bloch function to obtain the complete , "

wave function. (This is the expression that was actually used in the cal-
A semiconductor heterostructure is a single crystal culations presented here.) Unfortunately, Eq. (ES) holds

that includes (deliberately introduced) local changes in only if
the chemical composition. These introduce changes in
the "local band structure" which must be incorporated m *(q)l=4[m*(x)i+m(x'-]
into the effective-mass equation (E2) to obtain an accu- which holds only if the band structure varies slowly as a
rate model of the quasiparticle dynamics in a hetero- function of position. In general, a position-dependent
structure. For the sake of concreteness let us consider an effective mass will produce a nonlocal form for the
abrupt heterojunction. The local band-edge energy v, kinetic-energy superoperator in the Wigner-Weyl repre-
will be shifted across the heterojunction, and this effect is sentation (Barker, Lowe, and Murray, 1984). A more
easily incorporated into Eq. (E2) by making v, a function complete treatment, expressing the Wigner-Weyl trans-
of position. In general, the value of the effective mass formation in terms of the Wannier and Bloch representa-
will also change across a heterojunction, and this requires tions (rather than the position and momentum represen-
a more careful treatment of the kinetic-energy term. tations) has been developed by Miller and Neikirk (1990).
(Another way to view this problem is to state the condi- This analysis also demonstrates a nonlocal kinetic-energy
tions for matching 4' across an interface with discontinu- term.
ous m *. Because the matching condition follows unique-
ly from the form of the Hamiltonian, we shall focus upon
the it ter.) The problem is that many of the expressions APPENDIX F: THE BOLTZMANN COLLISION
one might write down [such as that in (E2)] become non- SUPEROPERATOR FOR PHONON SCATTERING
Hermitian when m * is taken to be a function of position. IN SEMICONDUCTORS
The simplest manifestly Hermitian form is

To investigate the full range of phenomena that occur
T 2 a I a in open systems, one needs a model of the dissipative pro-

2 ax m *(x) ax (E3) cesses (such as scattering of electrons by phonons in
semiconductors) that occur within the system. However,

although other, more complicated expressions have been the question of the correct description of such processes
suggested (see Morrow and Brownstein. 1984). In gen- is at present far from resolved (see Jauho, 1989). There-
eral, it appears that Eq. (E3), which might be termed thu fore, in the inductive spirit of the present work, we shall
"minimal Hermitian form," is an adequate approxima- assume a priori that the -lassical Boltzmann collision
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operator acting upon the Wigner distribution is an ade- tion rates depend upon the full three-dimensional k of
quate approximation at some level. The form that the each state, whereas the numerical calculations at present
Boltzmann operator takes within the present one- consider only the longitudinal momentum k . Thus the
dimensional model is developed below. scattering rates must be "projected" onto the one-

In solid-state physics the name "Boltzmann equation" dimensional model. To do so, we first assume that the
is applied to any transport equation that combines the distribution of electrons with respect to the transverse
Liouville description of ballistic motion with a local Mar- momenta of the initial state k is a normalized Maxwelli-
kovian model of the stochastic processes. This can in- an distribution at a fixed temperature:
lude such processes as the scattering of electrons by

phonons or impurities. These will be considered to be f(q,k')=f,(q,k )ft(q,k]), 1F41
one-body processes because the phonon and impurity de- where
grees of freedom are not explicitly included in the model,
and thus (neglecting Fermi degeneracy) such processes f,(k)=2'.rexp( -) 2 '-k,'/2), (F5)
lead to terms linear in the distribution function. The with 4 defined in Eq. (3.3). The resulting scattering
Boltzmann equation can also include a master-operator rates are then integrated over the transverse momenta of
description of two-body interactions such as electron- the final states:
electron scattering (and in statistical physics the name
"Boltzmann equation" usually refers more specifically to Q r J2

this kinetic equation), and such a term will be nonlinear W - f J d2kll ( kllHk''2

in the single-particle distribution function (assuming the

Stosszahlansatz). For the present purposes we shall con- X 8(Ek - Ek+ "to)

sider only one-body interactions so that the collision X ,,

operator is linear. I

The Boltzmann collision term is usually written in the where il is the volume of the crystal. Henceforth we
form (Ferry, 1980) shall drop the subscript from the k

q dk'Wf(q,k)_W f(q,k)] (F For polar optical-phonon scattering the abolute
(C, )(:t qk)= j" y-[W ) , (Fl square of the matrix element is (in SI notation and from

Fawcett, Boardman, and Swain, 1970)
%here 14,. is the rate of scattering from plane-wave state

k' to state k. (To m aintain consistency with the litera- (k H P,'k') 2 -  2= ..w , 4_1Tc
ture, we shall use the wave vector to label these states, Olk-k',2  4w' 0

rather than the momentum.) Equation (FI) can be
rewritten to emphasize the linear, homogeneous nature of x _ IN j, +7)
the collision term: Edc I

) k) = f dk' [ where wl,, is the longitudinal-optical phonon frequency,
21T and ECd and E, are the low- and high-frequency permit-

Xf(q,k') tivities of the semiconductor, respectively. The phonon
dk' occupation number Nl,, is given by the Bose-Einstein dis-
2C 8 (k,k')f(q,k') . (F2) tribution, and again the upper term (0) refers to absorp-

tion and the lower term (1) accounts for spontaneous

The collision term is local, so that in the complete kernel emission. The one-dimensional scattering rates are oh-
of C11 there is a 8 function in q, which is suppressed from tained by inserting Eq. (F7) into (F6). After some manip-
the above definition. Note that the potential superopera- ulation, one can write an expression for the scattering
tor V has a similar dependence on q [Eq. (4.10)], and as a rate. First, define dimensionless quantities a and b as
result (,B and V have the same sparsity structure in the . - f

discrete approximation [see Eq. (4.261]. Thus the addi- I . k k - , ,kol

tion of (1', to the calculation requires no modification to a (k k')

the superoperator data structures or solution procedures. X k(k -k') T lhooo
The scattering rates WA. are taken to be the Fermi b=

golden-rule rates. For electron-phonon scattering, V2.(k -k')

2 Then the scattering rate is
Wklk--- (kiH,,k')12 8(Ek - Ek. Z Tlo) , (F3)

W(P") rIwl, e I I~ l +N0 1
where H,P is the Hamiltonian for the electron-phonon in- I I I
teraction and to is the phonon frequency. In Eq. (F3) and a 2/2
the following, the upper sign refers to phonon absorption X --- - erfc[sup(ahl] F8
and the lower sign refers to phonon emission. The transi- k -k' -u 2
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The collision operator for polar optical-phonon scatter- 2.0x10 III I
ing in the one-dimensional model is then obtained by in- -
serting Eq. (F8), for both phonon emission and absorp- Acoustic phonons
tion, into a discretized version of (F2). --- LO phonons

The collision operator for acoustic deformation- - 1.5x l 4i

potential scattering may be similarly constructed. As-
suming equipartition of energy in the acoustic modes, the .

matrix element is (Fawcett, Boardman, and Swain, 1970) .O 10l04

,h=
2  -X2/

(kHak')l2 -  -2 Ik-k'N - , (179)
( k ~ p2 p , , s i 2 p , s ' n ( 9

L)0.5x 104

where -,, is the acoustic deformation potential, p, is the
mass density of the material, and s is the velocity of
sound. The second expression is obtained by expanding
the Bose distribution for low energies using to=sjk-k'I. 0.0 . 0 0

Inserting Eq. (F9) into (F6) and multiplying by 2 to in- 0.0 (V)

clude the equal emission and absorption rates, we obtain Voltage (V)

=2
W' p '  nfl1 x -- 2( 2 _ 2)/

k ' infj lexp[ -k-.k,-k's)/211 FIG. 25. Effect of phonon scattering processes on tLe J( V)
characteristic of the resonant-tunneling diode, using the

(FI0) Boltzmann collision operator. Scattering by longitudinal-optic
phonons significantly reduces the peak current and increases

Given the expressions such as (F8) and (FI0) we can the valley current. The effect of acoustic phonons is nearly
readily construct the collision operator using Eq. (F2). negligible. The temperature was 300 K.
For the purposes of numerical evaluation, it is most con-
venient to accumulate the values of Cn(k,k') (in the
discrete approximation) by performing the assignments

APPENDIX G: DEVELOPMENT OF THE DISCRETE

C(k,k'4)-CB(k, k')+(A / 2 7ri)Wkk,, WIGNER DISTRIBUTION FUNCTION FCR
(FI l) SIGNAL ANALYSIS

C8)( k,k),--C ( k,k )-( A / 2v-i) WK.
The Wigner distribution function has been found to be

useful in the field of signal analysis, where it provides a
for all values of k and k'. One can implement this pro- way to define a time-dependent frequency spectrum
cedure in a single subprogram to which a function that (Claasen and Mecklenbriuker, 1980). The notion that a
evaluates WAk, is passed as an argument, and then invoke frequency distribution can vary with time is quite intui-
this subprogram for each of the processes of interest. A tive: Consider our usual concept of music as a temporal
convenient test of the resulting C8 is provided by the sequence of notes. But it encounters precisely the same
principle of detailed balance. It is CBfCq =0, where feq problem with respect to the Fourier uncertainty principle
is an equilibrium (Maxwellian) distribution. The collision that the notion of a position-dependent momentum dis-
operators obtained from Eqs. (F8) and (FIO) pass this tribution does with respect to the quantum-mechanical
test. uncertainty principle. Thus the Wigner distribution may

The effects of the Boltzmann collision operators for be employed for the same purpose as in quantum
these phonon scattering processes on the steady-state mechanics: as a rigorous description that has a simple
characteristics of the RTD are illustrated in Fig. 25. In interpretation in the "classical" regime (in this case, for
this calculation the matrix elements for GaAs using the signals whose frequency spectrum changes slowly).
parameters of Fawcett, Boardmann, and Swain (19"70) The relevance of this body of work to the present dis-
were assumed to hold throughout the structure. The cussion is that digital signal analysis employs discretely
acoustic-phonon scattering has a very small effect on the sampled signals that are fully analogous to the discrete
J( V) curve. The longitudinal-optic phonon scattering models discussed in Sec. VI.A. Many of the mathemati-
processes significantly decrease the peak current and in- cal properties (and difficulties) of the discrete Wigner dis-
crease the valley current. The initial report of this calcu- tribution discussed there have already been explored in
lation (Frensley, 1988b) employed a scattering operator the context of signal analysis. The purpose of this Ap-
for the longitudinal-optic phonons which was one-half of pendix is to delineate the parallels between the signal-
the correct value, due to an algebraic error. Similar cal- analysis work and the work reviewed in the body of the
culations have been done by Mains and Haddad (1988b). present paper.
Kluksdahl et al. (1989) and Jensen and Buot (1990) have In the signal-analysis problem, one has a function X(t)
used a relaxation term to model the inelastic processes. that has been sampled with an interval T so that only the
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values x(n)=X(nT) are known for integral n. The sam- Biittiker, M., Y. Imry, R. Landauer, and S. Pinhas, 1985, Phys.
pled signal corresponds to a Schr6dinger wave function Rev. B 31, 6207.

defined on a spatially discrete basis. The autocorrelation Cahay, M., M. McLennan, S. Datta, and M. S. Lundstrom,

sequence, O.,(m,n)=xx, (or a statistical average of 1987, Appl. Phys. Lett. 50, 612.

this quantity, Oppenheim and Schafer, 1975, Chap. 8), Caldeira, A. 0., and A. J. Leggett, 1983, Physica A 121, 587.
Carruthers, P., and F. Zachariasen, 1983, Rev. Mod. Phys. 55,

corresponds to the density matrix. The Wigner distribu- 245.
tion function f(n,O), where n represents the time (and Castagne, R., 1985, Physica B 134, 55.
corresponds to j) and 0 represents the frequency (and Champlin, K. S., D. B. Armstrong, and P. D. Gunderson, 1964,
corresponds to p), is obtained from the autocorrelation Proc. IEEE 52, 677.
sequence by a transformation similar to Eq. (4.13). Chang, L. L., L. Esaki, and R. Tsu, 1974, Appl. Phys. Lett. 24,

The initial work on the discrete Wigner distribution by 593.
Claasen and Mecklenbriuker (1980) used precisely the Chester, G. V., 1963, Rep. Prog. Phys. 26,411.

definition (4.13) (but regarded 0 as a continuous variable). Claasen, T. A. C. M., and W. F. G. Mecklenbriuker, 1980 (in

They observed that only one-half of the autocorrelation three parts) Philips J. Res. 35, 217; 35, 276; 35, 372.

information is employed in this definition, as illustrated Claasen, T. A. C. M., and W. F. G. Mecklenbrauker, 1983,
in Fig. 2 1, and noted that, as a consequence, 0 is periodic IEEE Trans. Acoust. Speech Signal Process., ASSP-31, 1067.

Constant, E., 1985, in Hot-Electron Transport in Semiconduc-
with a period of wr rather than 27r. (The corresponding tors, edited by L. Reggiani, Topics in Applied Physics Vol. 58

expression in the present work is NpAp=iri/Aq.) In a (Springer, Berlin), p. 227.
later work, Claasen and Mecklenbriuker (1983) investi- Conwell, E. M., 1967, High Field Transport in Semiconductors,
gated the consequences of modifying the definition of the Solid State Phys., Suppl. 9 (Academic, New York).
discrete Wigner distribution by modifying the kernel of Dahl, J. P., 1981, "Dynamical Equations for the Wigner Func-
the transformation (4.13) to be something more elaborate tions," Technical University of Denmark preprint.

than just an exponential function. In particular, they Davies, E. B., 1976, Quantum Theory of Open Systems

weighted the exponential by a factor very similar to that (Academic, London).

which appears in Eq. (7.10), used by Mains and Haddad Dickinson, H. W., 1938, A Short History of the Steam Engine

(1988a, 1988c) to weight the potential kernel. Poletti (Cambridge University, Cambridge), Chap. 6.
(1988) has further developed this analysis. Dingle, R., W. Wiegmann, and C. H. Henry, 1974. Phys. Re%.(198) hs futhe deelopd tis aalyis.Lett. 33, 827.

If the details of the physical system that produced the Lett ., 27.Dresden, M., 1961, Rev. Mod. Phys. 33, 265.
signal x(n) are unknown, as is usually the case in signal Duderstadt, 1. J., and W. R. Martin, 1979, Transport Theory
analysis, the analog of the Liouville equation is also un- (Wiley, New York), Sec. 8.1.2.
known. Thus, in this context, it is natural to try to Duke, C. B., 1969, Tunneling in Solids, Solid State Phys., Suppl.
resolve the problems of the discrete Wigner function by 10 (Academic, New York).
modifying the expression by which it is defined. This ap- Eastman, A. V., 1949, Fundamentals of Vacuum Tubes
proach is complementary (and quite possibly equivalent) (McGraw-Hill, New York).

to that explored in Sec. VII for modifying the Liouville Fawcett, W., A. D. Boardman, and S. Swain, 1970. J. Phys.

equation. Chem. Solids 31, 1963.
Ferry, D. K., 1980, in Physics of Nonlinear Transport in Semi-
conductors, edited by D. K. Ferry, J. R. Barker, and C.
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NANO2D:
A TWO-DIMENSIONAL HETEROSTRUCTURE

DEVICE MODELING PROGRAM

Ann M. Bouchard and James H. Luscombe
Central Res.earCh T .,qhnrq tories

Texas Instruments Incorporated
Dallas, Texas 75265

I. Summary

NANO2D is a general two-dimensional device simulation code which obtains the self-
consistent potential energy surface defined by the conduction band minimum for a wide class of
two-dimensional III-V semiconductor heterostructure devices. It does so by solving a two-
dimensional nonlinear Poisson equation, utilizing a zero-current, local thermodynamic equilibrium
approximation for the carricr density. By "two-dimensional" we mean that the user can specify, in
addition to an arbitrary sequence of epitaxial growth layers in the vertical direction, an arbitrary
lateral variation of material composition and doping, such as might be achieved by epitaxial
regrowih techniques. In addition, the user can specify the lateral bias across Ohmic emitter and
collecto:- contacts as well as voltages applied to a back Ohmic contact and one or more top Schottky
gates.

NANO2D is implemented on the CRL VAX system. It may be used to investigate and
optimi, e heterolayer design in high electron mobility transistors (HEMTs) and in lateral resonant
tunnel*;g devices (LRTDs) which utilize split-gate top contacts. It may also be used to explore
epitaxi-! regrowth schemes which enhance electron confinement, and to model the effects of the
applicaion of different gate and back contact voltages on the electron potential energy surface."i he current implementation explicitly accomodates AIGaAs and InGaAs compounds.
l-Iowe,,cr, the code's capability will be generalized to all III-V compounds in the forthcoming
upgrad.;.

11. Device Structure

it order to demonstrate the capabilities of the NANO2D code, and to provide users with
some s -nse of what sort of input results in what sort of output, the bulk of this document will be
given i+i the context of an example device, shown schematically in Fig. 1. This particular structure
could t;e a test design for a LRTD. The idea in this design is to confine electrons vertically in a
two-di. ,iensional electron gas (20EG) in the InGaAs layer and create an electrostatic double barrier
potential in the lateral direction for lateral resonant tunneling. The two Schottky gates on the top of
the struCture will control the height of the lateral double barriers. Regrowing n+ doped material
outside of the gates is expected to enhance the height to width ratio of the double barrier potential in
the lnGaAs layer.

Fig. 1 (a) shows a top view of the device and indicates the position of emitter and collector
contacts, gates, and regrowth regions. Panel (b) shows a vertical cross section along the dashed
line in pancl (a). This device consists of six layers of semiconducting ilateijal, although there is no
practical limitation on the number of layers which can be modeled. The top layer contains five
lateral regions of GaAs with different doping concentrations. The second layer also contains five



regions, but with variations in the material composition as well as the doping. The thickness ofeach layer, and the width, composition, and doping in each region within each layer is specified bythe user. The position of the left and right edges of up to five Schottky gates is also user-specified.

Gates

mme .o.e. GaAs

Fe m. ereack Contact
EZZ!fddGas

. .doe GAASd a~

uncloped GaAs

n* doDed GaAs O Ohmic contact

undoed AIGaAS Sicottky contact

n.- dooe AIGaAS

undjoed InGaAs

Fig. I Generic device structure for NANO2D

Ill. Using NANO2D
A. The NANO2D Command File

NANO2D must be ran within the VAX environment. Since it takes on the order of five CPUminuteS to run, users are advised to submit the job to a batch queue using the SUBMIT command.The command file which compiles, links, and runs NANO2D, and which supplies the input, isfoind in SCL:[BOUCHARD.RELEASEINANO2D.COM. Users should copy this file into theirow,'n directories and make changes to input in their own versions. Throughout this technical reportreterences are made to specific lines of the NANO2D.COM file. To aid the reader, the Appendixcontains a copy of this file, with input corresponding to the example device of Fig. 1.



The first change which should be made to [yourdirectory]NANO2D.COM is the default

directory. The second line of the file should read

$ SET DEFAULT [your-directory]

The string "your directory" should be replaced by the name of the directory where output files are
to be written. Aside from the NANO2D.LOG file, which contains a summary of the device
parameters and other useful information, the only output files are HP plotter files which are printed
automatically by the NANO2D.COM file and may be deleted as soon as printing is completed.

B. Input

The eighth line of NANO2D.COM issues the command to run the NANO2D program. The
lines that follow immediately after the RUN command are input statements. The following
discusses the required input. Input parameters appearing on the same line should be
separated by b.lank_.sp.ace, nJ by commas, periods, or any other punctuation
marks.

(1) title
The 80-character line immediately following the RUN command is reserved for user

comments. It may be used to identify or "title" the particular set of input parameters, and will
appear as a title on graphical output. It may contain any combination of alphanumeric characters,
punctuation, and white space.

(2) Device Structure Input

(a) vmesh imesh temp
The line immediately following the title must contain three real values, the vertical mesh

spacing (in nm), vmesh, the lateral mesh spacing (in nm), imesh, and the temperature (in K),
temp. Any comments to the right of these three real values are ignored by the program. We
recommend that vmesh be chosen such that no semiconductor layer contains
fewer than five mesh points, and that Imesh be chosen such that no lateral
region contains fewer than eight mesh points. This will ensure a potential
energy surface which varies smoothly in both dimensions.

(b) The next section of input contains the structure information, layer by layer, and
region by region within a layer. The specification of a single layer requires one line of input
for each region of material in the layer. (e.g. The top layer of Fig. 1 requires five lines of
input, whereas the third layer requires only one line, as shown in the Appendix.)
Specifically, the input for a layer consists of (i) one line for the first (left-most) region; (ii) if
necessary, lines for the remaining regions, in order from left to right; and (iii) NEXT, to
signal to continue to the next layer. The form of the input (i), (ii), and (iii) are given in the
following:

(i) Ithick width dope material composition
The first line of input for one semiconductor layer contains the layer thickness (in

nm), Ithick, the width (in nm) of the first (left-most) region in that layer, width, the
doping concentration (in cm 3 ) of the first region, dope, and the material composition
in the first region. (The format of the material composition is discussed in sub-section
(d).)



(ii) width dope material composition
The second and subsequent lines for the same layer just contain the width, dope,

and material composition of the respective region within that layer. Note that Ithick
is not included in these input lines, since the thickness for all the
regions in the layer is specified in (i).

(iii) NEXT
When the last (right-most) region of the layer has been specified in this way, it is
followed by a line containing the word NEXT, meaning go on to the next layer. It
must be in all capital letters with no punctuation.

(c) END
When all layers have been entered (the last layer must also end with NEXT),

the following line contains the word END, indicating the end of semiconductor layer input.
It also must be in all capital letters with no punctuation.

(d) The input format for the material composition is easiest described through a series
of examples:

(i) GaAs is indicated by Ga 1.00
(ii) InAs is indicated by In 1.00
(iii) Ga0 .7A10 .3As is indicated by Ga 0.70 Al 0.30
(iv) In0 15Ga0 .85As is indicated by In 0.15 Ga 0.85
(v) In0.0 5A10 .2Ga0. 75 As is indicated by In 0.05 Al 0.20 Ga 0.75

The pattern here is straightforward. The Group-III element is followed by its mole-
fraction. As long as there is additional input to the right, the program continues to read it.
Currently, it is assumed that the Group-V element is As. In the forthcoming upgrade,
however, other Group-V elements will also be allowed. In the newer version, if no Group-V
element appears in the input line, then As will be assumed. If, however, P or Sb, is desired,
that is indicated with the appropriate chemical symbol to the right of the Group-Ill input, as
in the following examples:

(vi) InP is indicated by In 1.00 P
(vii) AISb is indicated by Al 1.00 Sb
(viii) In0 .2 5Ga0 .75P is indicated by In 0.25 Ga 0.75 P

Note: It is important not to have extra characters or comments to the right of
the structure portion of the input (part (2)), as the program will read it and
attempt to interpret it as additional input data.

(3) Boundary condition information

(a) f lev_pin
The line immediately following the 'END' of the structural input must contain one real

number, f lev_pin, the energy value (in eV) of the Fermi-level pinning of the top layer of
semiconducting material. For GaAs this number is usually taken to be 0.7 eV, half of the
band gap energy. If the top layer is something other than GaAs, then af lev_pin value equal
to half the band gap of the surface material is a reasonable choice.



(b) The next section of input contains information about the top contacts, or Schottky
gates. The first line simply specifies the number of gates. The lines that follow give details
about each gate, one line of input per gate, ordered from left to right.

(i) ngates
The next line contains an integer, ngates, the number of gates. The current

version of the program supports up to five gates. Note: If you wish to run with
no_ gates, be sure to read Section V, "What Else Users MUST Know
Before Modeling a Device."

(ii) lpos rpos voltage Schot bar
The following ngate lines each contain four real numbers characterizing each of

the gates. Lpos specifies the position of the left edge of the gate; rpos specifies the
position of the right edge of the gate. Both are measured in nm from the left boundary
of the device. Voltage is the voltage applied to the gate in volts, and Schot-bar is the
height (in volts) of the Schottky barrier formed at the interface between the gate and the
top semiconductor. The gates should be ordered from left to right. e.g. If ngates = 3,
then the left-most gate should be entered first, the middle gate should be entered
second, and the right-most gate should be entered last.

(c) Ohmic contact voltages
(iii) v emit v collect
The next line contains two real numbers, v emit and v collect (in volts), the

voltage applied to the emitter (left) contact and collector (right) contact, respectively.
(iv) v back
The next line contains a real number vback (in volts), the voltage applied to the

back contact.

Remarks:
(1) The contact voltages should be specified with respect to some

ground. For example, one could specify Vemit =0.0 (ground) and
specify v-collect and vback with respect to vemit.

(2) The Schottky barriers should be positive valued and indicate the
height to which the Fermi level of the semiconductor is pushed up with
respect to the conduction band of the metal gate.

(3) If a bias is to be applied from the emitter to the back contact,
then at least one larger-band-gap material layer must isolate the back
contact from the emitter and collector regions. See Section V, "What
Else Users MUST Know Before Modeling a Device."

(4) Output Options
(a) flag
The next line contains an integerflag. Ifflag 0 0, then two figures are generated: a plot

of a lateral slice of the potential energy surface, and a plot of a vertical slice down the center
of the potential energy surface. If flag > 0, then three figures are generated: the lateral slice,
the center slice, and a plot of the full potential energy surface.

(b) depth
The next line contains the depth (in nm) below the surface of the structure where the

lateral slice plot is to be generated.
(c) pen speed
The last line of input contains an integer, the HP plotter pen speed. For most cases "2"

is a good choice. For publications or foils, we recommend a slower speed, "1" or even "0".



Remark:
If flag 0, then it is a good idea to put an exclamation point (!) in front

of the last statement of the NANO2D.COM file. It would then read:

!$ pmhp hp7550a.dat;-2

This prevents printing a version of the HP-plotter file left over from a
previous run.

C. Modeling a Device

When the input has been changed to specify the structure of the device of interest, simply
SUBMIT the NANO2D.COM file to a batch queue. Within ten or fifteen minutes wall-clock time
the graphical output will be printed on the HP plotter in the VAX printer room in the Research
West building. If output is desired in the Research East building, the last three commands in the
NANO2D.COM file must be changed from "pmhp" to "prhp". For foils in Research West, the
command is "pfmhp", and for foils in Research East, it is "pfrhp". The lateral slice plot, the center
slice plot, and if flag > 0 the full potential surface are printed on the designated printer when the
program has finished running.

IV. Output

The NANO2D.LOG file contains a report of the various input parameters of the run and other
diagnostic statements. Most of the output is in graphical form.

A. What the Output Looks Like

The first figure output is a constant-z slice of the potential as a function of the lateral
position x. The z-position of the slice is specified by the variable depth, as discussed in the
last section. Fig. 2 illustrates this output for the example device of Fig. 1, with a depth of
27.0 nm which is just at the top of the InGaAs layer. The dashed lines (these will be red in
the actual output from the program) indicate the position of the Fermi level in equilibrium
with the emitter (to the left) and the collector (to the right).
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The second figure plotted is a constant-x slice of the potential down the center of the
device. Fig. 3 shows the center plot for the example device.

Lateral modulation of band-edge
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Fig. 3

The lateral position for the slice is half-way between the emitter and collector, i.e. half of the
x dimension of the device. For a device with two gates symetrically placed, this gives a slice
mid-way between the two gates. For some other number of gates, one may prefer other
vertical slice positions. See Section VII, "User Feedback" to report suggested changes.

The dashed lines (again, these will be red in the actual output) show the position of the
Fermi level. Since it is assumed that the back contact is isolated from the emitter/collector
region of the device by an AlGaAs barrier near the bottom of the device (e.g. layer 4 of the
example device serves this purpose), then by default the Fermi level is drawn to either side of
this layer. If no such layer exists in your model, and some alternative Fermi-level plotting is
needed, again see section VII, "User Feedback" to request changes.

If the variable flag is greater than zero, then a third figure is also plotted, the full two-
dimensional potential energy surface as a function of both x and z. This plot is shown, for
the example device, in Fig. 4. The z-axis is reversed in this figure to provide the best view



of the surface. Users must keep in mind that although in this figure the origin is in the lower
left comer of the device, in the input, the origin is in the upper left corner.The contours (red
in the actual output) indicate the position of the Fermi level in equilibrium with the emitter
(near edge), the collector (far edge), and the back contact (to the right).

-e4-

0 Q.0

Fig. 4 Complete band edge surface for structure listed in the Appendix

B. Understanding the Output

In order to gain some sense of what these figures mean, look first at the 2-D conduction
band profile (Fig. 4) and compare it with the structure of the device in Fig. 1. The top of the
device is to the upper left, where the potential bends up due to Fermi-level pinning. The two
barriers which originate at the top of the structure are due to a voltage applied to the Schottky
gates. The barrier from z=30 to 40 nm is the AIGaAs layer (layer 4), and the two tall bumps
at about z=50 nni are due to the undoped AlGaAs regions of layer 2.

The first thing to notice is that, in general, regions of A1GaAs have relatively high
potential energy, InGaAs has a very low potential energy, and the GaAs regions are
somewhere in between. This is because of the difference in band gap of the three types of
materials. Secondly, note the big dip in potential energy in the region between the undoped
AlGaAs regions of layer 2. Even though all three regions in the middle of layer 2 are
AlGaAs, the heavily doped region has a lower potential energy than the undoped regions.
This device design exploits such effects by including regions of regrown heavily doped
GaAs on the outside of the gates. This enhances the deepening of the InGaAs layer on the
outside, to increase the height to width ratio of the double barriers.

Now that we have a global idea of what is going on in the device, from looking at the
2-D potential surface, we can focus on what is going on in some particular area of interest. In
the example device, that region of interest is the InGaAs layer, where we hope to have a good



double-barrier potential set up with the Fermi level above the conduction band both to the left
and to the right of the barriers. The slice-plot (Fig. 2) shows clearly that this has been
achieved, and allows a clearer view of the lateral shape of the potential. The center-plot (Fig.
3) provides a "side view", to allow us to determine how isolated the InGaAs layer is from the
back contact, and from the surface of the device.

V. What Else Users MUST Know Before Modeling a Device:
"Boot-Strap" Approach to Modeling a Device

NANO2D solves for the self-consistent conduction-band profile using the "zero-current"
approximation. This approximation is valid for a device under bias only if the contacts are
sufficiently isolated from each other by potential barriers. We recommend a "boot-strap" approach
to modeling a device under bias: First, model the device with zero volts at all three contacts. Then
add gates, and adjust the gate voltages and back contact voltage until you are satisfied that the
emitter and collector are isolated by electrostatic potential barriers. Then, you are ready to apply an
emitter-collector bias.

If two contacts are not sufficiently isolated and there is a potential difference
between them, the program will work in an unpredictable way. Either it will not
converge, or it will converge to a a solution which is likely incorrect. It is very
important to make sure the contacts are ise-,ted before applying a bias.

It follows, therefore, that this program is not appropriate for modeling a device under bias
with no gates unless there is a large-band-gap material region separating the emitter from the
collector.

VI. Some Helpful Hints
A. Biasing the Back Contact

Applying a voltage to the back contact which is negative with respect to the emitter results in
the energy band near the back contact being pulled up. To illustrate ui'. effect, Fig. 5 shows the
center plot for the same example structure as in Fig. 3, but with a v-back = -0.2 V.
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We have found that this negative bias tends to pull electrostatic barriers set up by the gates deeper
into the device. Note in Fig. 6 how much higher the barriers rise above the Fermi level with -0.2 V
applied to the back contact, than in the 0.0 V case of Fig. 2.

Lateral modulation of band-edge
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Fig. 6

This may be important for isolating the emitter from the collector with electrostatic barriers. If, for
example, the barriers were entirely below the Fermi level without any back-contact voltage, the
application of some negative voltage may pull the barriers up sufficiently to isolate the emitter and
collector, so that the device could then be modeled with an emitter-collector bias.

B. Surface Depletion

Fermi-level pinning of 0.7 eV results in depletion of the surface to about 25 nm in GaAs.
Any lateral pathway through GaAs where current is to flow must be more than 25 nm deep, or it
will be depleted. An InGaAs pathway may be placed somewhat less than 25 nm and still not be
depleted.

C. One Job at a Time

Each of the graphical output files is named HP7550A.DAT, and a single job creates two or
three versions of the same filename. If more than one job is simultaneously creating two or three
versions of the same filename all in the same directory, it is difficult to sort out which output



figures belong to which job. We recommend that not more than one NANO2D job be run in the

same directory at the same time.

D. Publication-Quality Graphics

The recommended vertical and lateral mesh spacings may be unsuitable for publication-
quality graphics. The resolution of the full potential energy surface, after reduction to publication
size, would likely be poorer than desired. For making publication-quality figures, a larger mesh
spacing may be in order. However, we still strongly recommend a small mesh spacing for every-
day use, to ensure accurate simulations. (It goes without saying that one should compare the
results of the larger-mesh simulation with those of the smaller-mesh, before publishing.)

VII. User Feedback

Please forward any comments, observations of bugs, or requests for added functionality to
James H. Luscombe, 995-6968, MS 154, VAX RESBLD::LUSCOMBE.
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Appendix

$ ASSIGN NL: SYS$PRINT
$ SET DEFAULT [bouchard.release]
$ set noverify
$ pvi
$ set verify
$ PASCAL nano2d
$ DI3LOAD nano2d,[FRENSLEY.GRAPHICS]WRFPLOT.OLB/library share
$ purge nano2d.*
$ RUN nano2d
Lateral Resonant Tunneling Device
1.6 5.0 300.0 VERT MESH SPACING, LAT MESH SPACING
(NM),TEMPERATURE(K)
15.0 70.0 2.0e18 GA 1.00

20.0 1.0elO GA 1.00
30.0 ').0E18 GA 1.00
20.0 i.OEIO GA 1.00
70.0 2.0E18 GA 1.00

NEXT
10.0 70.0 2.0E18 GA 1.00

20.0 1.OEl0 GA 0.75 AL 0.25
30.0 2.0E18 GA 0.75 AL 0.25
20.0 1.0E10 GA 0.75 AL 0.25
70.0 2.0E18 GA 1.00

NEXT
8.0 210.0 1.0elO GA 0.90 IN 0.10



NEXT
10.0 210.0 2.0E18 GA 0.75 AL 0.25
NEXT
5.0 210.0 1.0E10 GA 1.00

NEXT
25.0 210.0 2.0E18 GA 1.00
NEXT
END
0.7 flev-pin (eV)
2 number of gates
72.0 88.0 -0.2 0.7 left and right edges of gate, voltage, and Schottkybar
122.0 138.0 -0.2 0.7 left and right edges of gate, voltage, and Schottky-bar
0.0 0.05 emitter and collector voltages
0.0 back contact voltage
1 flag > 0, 3D plot; flag <= 0, just center slice
25.0 location of slice to be plotted
1 pen speed (for hp plotter)
$ pmhp hp7550a.dat;
$ pmhp hp7550a.dat;-1
$ pmhp hp7550a.dat;-2
$ del nano2d.map;*
$ del nano2d.lis;*
$ EXIT
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Tunneling spectroscopic study of finite superlattices
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We present a tunneling density of states study of the transition from a superlattice miniband
to a sequential coupled well structure. We have observed by tunneling spectroscopy the
eigenstates of a finite superlattice system far below the Stark localization threshold. The
transition from an indistinguishable miniband to a coupled well structure is experimentally
found to be 2.5 meV < W(miniband width)In(# periods) < 10.5 meV.

Semiconductor superlattices have received renewed in- top nonalloyed ohmic contact. To study the effects of con-
terest for the design and fabrication of novel electronic tact doping, S3 had symmetric 400 A 1 017 cm - 3 con-
structures utilizing perpendicular transport. A central is- tact regions adjacent to the superlattices. S5 was identical
sue for the design, utilization, and analysis of superlattice to S4, except that the bottom superlattice was replaced
structures is the nature of the electronic states. In weakly with bulk GaAs (though the doping modulation was iden-
coupled superlattices it has been shown i that the perpen- tical). Structural parameters were verified by cross-section
dicular transport proceeds via sequential tunneling, transmission electron microscopy, and photoluminescence
whereas under the proper conditions a miniband forms.2-4  of nominally identical superlattices (grown without doping
We present here a tunneling density of states study of the and contact structures) was used to verify superlattice
transition of a finite superlattice from a superlattice mini-
band to a coupled well structure.

A generic superlattlze tunnel diode structure 5 was uti-
lized to study the density of states in a series of superlat-
tices. Figure 1 shows a self-consistent band diagram at
resonant bias (a), along with the experimental current (1) 0.10

[and conductance (G)] versus voltage (V) characteristics
(b), of the type of structures investigated in this study. 0.05
This specific example is a structure identical to the initial
work of Davies et aL5 The band diagram is determined It
from a self-consistant finite temperature Thomas-Fermi 0.00.
zero-current calculation,6 with the superlattice structure IO
determined from an envelope function calculation super-

-0.05.............
imposed. When the top of the first collector miniband
crosses the bottom of the available emitter electron supply,
a decrease in current occurs due to the requirement to -0.10
conserve both energy and momentum. This is defined as
the resonant (peak) voltage. It should be emphasized that 0 50 100 150 200 250 300 350
realistic band diagrams are necessary for an accurate un- (a) z (nm)
derstanding of resonant effect.

Table I illustrates the series of superlattice structures 1.0_o- _ _ 2.5x1o-4

investigated. Structure SI was identical to that of Davies et
al. 5 The remaining samples consisted of a Cr-doped semi- 5.0:1- - 1.5u0,0

insulating GaAs substrate, a 0.5 pm undoped GaAs buffer, I _ 5.0110-6

1 ja 0m I X 1018 cm -3n ' -GaAs bottom contact, a 420 0. o.oxto0  W _ V -

1x 10'7 cm 3(last 20 A undoped) GaAs contact to su-
perlattice transition r':gion, a superlattice/tunnel barrier/ -. 010- 4V -/d4

superlattice region symmetric about the tunnel barrier, a - IO
-
5 2.5zl0

- 4

400 A 2 X 10"' cm - GaAs top contact, and an InGaAs 0-.30 -0.15 0.00 0.15 0.3
(b) Device Bias (V)

" Department of Electrical Engineering and Computer Science, Massa.
chusetts Institute of Technology. Cambridge, MA 02139. FIG. I (a) Self-consistent r-point energy band vs epitaxial dimension of

"New addtess: Department of Electrical Engineering, Yale University, sample SI at resonant bias. The hatched regions denote the 25-meV-wide
P 0 Box 2157 Yale Station. New Haven, CT 06520-2157. lowest superlattice minibands and the dotted lines the Fermi level. The

''New address: Erik Jonsson School of Electrical Engineering and Com- structure is identical to that reported by Davies et al. (Ref. 15) T = 4.2
puter Science, University of Texas at Dallas, P. 0. Box 830688, Rich- K (b) Experimental current (solid) and conductance (dashed) vs volt-
ardson. TX 75083-0688. age characteristics of SI. T= 4.2 K
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TABLE 1. Summary of the superlattice tunneling structures investigated. 1O1
EsI.,.. - E,. denotes the energy of the bottom of the first miniaban (in
meV), referenced to GaAs. W denotes the width (in meV) of the first I.ss-o AKIe- 4

miniband. The superlattice minibands were calculated using an infinite /
envelope function approximation. E 1si - E, denotes the Fermi energy of 1,.g) -V - .,

4 
1

the superlattice (in meV), referenced to GaAs.

dG,A,/dA1GA, EM.mn - E, W EF.SL - E, - \ / I.'O.1-

Sample (A) (meV) (MeV) (MeV) \- t..16t-6 L,. .B~

SI 60/30 53 30 62 -0.20 -0.o 0.00 0.10 0.9(

S2 40/50 90 25 96 Device Dia (V)

S3 49/14 45 105 57
S4 40/10 43 190 55 FIG. 2. Low-voltage I-V (solid) and G-I (dashed) characteristics of
S5 40/10 43 190 sample S3 (105-meV-wide superlattice miniband) at 4.2 K. The * - 120

(asymmetric) mV major resonances corresponds to the alignment line-up of the first

minigap with the emitter.

band gap and aluminum content. Mesas as small as corresponds to the line-up of the first minigap with the
4(pm) 2 were fabricated using standard contact lithogra- emitter. A series of peaks on the low bias side of the major
phy processing. peak is apparent. Note that these biases correspond to elec-

The superlattice structure SI is presented to compare tric fields well below that expected for Stark
to previous work.5 Structures S2-4 are also ten period su- localization.9t 0 The condition for Stark localization of a
perlattices, designed such that the superlattice miniband superlattice is eEd> W, where E is the applied electric
widths span the available range in the conduction band. field, d is the superlattice period, and W the width of the
The GaAs wells of these superlattices were doped at miniband under consideration. At the biases considered
I \ 1017 cm ', the A](, 1 Ga0,-7As barriers were nominally here, the Stark splitting is < 10 meV, compared to a mint-
uidoped, and the tunneling barrier was kept fixed at 100 A band width of 105 meV. The "subresonant series" starts to
of Al o,2Ga 0 77As. S2 has the same approximate miniband degrade above 20 K, and is unobservable (except for the
width as S1. with the second miniband "virtual- only. S3 is highest subresonance peak) above 50 K.
designed to have the same approximate superlattice energy Figure 3 shows the I-V and G-V characteristics of a
centroid as S2, with a factor of 4 larger miniband width. S3 superlattice miniband experimentally increased to 190
and S4 have the same miniband minimum, with S4 having meV (S4), keeping the number of superlattice periods con-
almost a factor of 2 larger miniband width than S3. In stant. The subresonance series is very pronounced; higher
addition, the top of S4's first miniband is "virtual." Sh's bias peaks are evident even at room temperature. Assum-
superlattice is identical to S4, except the asymmetry allows ing that the structure is due to the finite extent of the
one to investigate injection into a superlattice from a 3D superlattice, we calculate the single electron transmission
system, and vice versa, coefficient of the ten-period superlattice/coupled quantum

The superlattice Fermi levels were calculated by as- well system, and map these ten resonant peaks onto the
suming free electrons in the transverse directions and self-consistent band structure. Figure 4 shows the calcu-
Bloch states for the vertical direction. The Fermi level was lated resonant crossings of the collector finite superlattice
then inferred as the chemical potential which leads to a transmission peaks with the emitter Fermi level, compared
miniband-occupied carrier density corresponding to the av- with the experimental resonant peaks. The calibration of
erage carrier concentration of the sample.7 It should be the top resonance is determined by the number of periods
noted that determination of the superlattice Fermi level in in the finite superlattice, and the low peak cutoff is deter-
general produces a higher Fermi level than that for a bulk mined from the superlattice Fermi level. The agreement
system of the same density. between calculated and experimental peak position is qual-

The I-V and G- V characteristics of samples SI and S2 itatively (a V / 2 behavior) and quantitatively good. Like-
are very similar, exhibiting well-defined negative differen-
tial resistance (NDR) at low temperature [with peak-to-
valley (PlV) current ratios as high as 2:1 for SI, 2.4:1 for t.otO-' .,,,dito

-

S21. NDR is observable (P/V 1.3:1) at room temperature " _
in S2, and an inflection is clearly evident at room temper- B -
ature in S1.8 Aside from the major resonance (Fig. 1), -5Oi~

there is no apparent additional structure in the conduc- 0.0Z100 _ to- 5

tance greater than the I mV (i.e., 12 K) experimental n '

resolution for either SI or S2, at a sample temperature of - I.o-

4.2 K (immersed). K0.10-8
We now experimentally increa the mpeaice mini- '

band from 25 to 105 meV and examine the vrtical tram- D

port. Figure 2 shows the low-voltap I-V and G-V charac- O. 3 low-.ir . 1-1V (dusil) an 6-V (solitd) characteristics of
teristics of S3 at 4.2 K. The ± -120 mV major peak sample 34 (190.meV-wide soperlattce mmnibanl) at 10K
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a exp 0
A theo-

15 .

E > 1.ozIo-"
to

51 1 t 1 1 ~=o
5 9 !o 0.60 -0.30 0.00 0.30 0.60

Peak Index Device Bias (Y)

FIG. 5. G- V characteristics of sample S5 (S4 with one superlattice re-
FIG. 4. Experimental (square) and theoretical (circle) resonant cross- placed with bulk GaAs). T = 10 K. Positive bias corresponds to electron
ings of the collector finite superlattice transmission peaks with the emitter injection from the bulk GaAs into the finite snperlattice.
superlattice Fermi level. The calculated resonant crossings were deter-
mined from mapping the finite superlattice transmission peaks onto the
self-consistent band structure and determining the bias at which they transport the eigenstates of a finite superlattice system far
cross the emitter Fermi level. below the Stark localization threshold.
wise, S3 shows similarly good agreement. High-voltage We are thankful to R. T. Bate, D. C. Collins, and C.
deviation may indicate a zero-current model is no longer Fonstad for constant support and encouragement, to W.
valid. M. Duncan for the photoluminescence measurements, to J.

The absence of structure in SI and S2 implies that we N. Randall for discussions, to H.-L. Tsai for cross-section
have experimentally observed the transition (in this sys- E santoRK.AdrPQ.M tgu,.D.ij,
tem) from an indistinguishable miniband to a coupled-well P. F. Stickney, F. H. Stovall, and J. R. Thomason for
structure. In energy, this implies the transition occurs be- technical assistance. This work was done under the MIT-
tween state splittings of 4 meV (the maximum in SI1) and TI VI-A Internship Program, and was supported in part by
8 meV (the minimum observable in S3), when kT < the the Office of Naval Research.
state splitting E(i + I ) - EMi. Note that this is a function
of the position of eigenstate i within the miniband. In ra- ' K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, and C. G. Bethea,

tionalized units, this corresponds to 2.5 meV < W(mini- ,Phys. Rev. B 35, 4172 (1987).
band width)/n (# periods) < 10.5 meV. The origin of the 'T. Duffield. R. Bhat, M. Koza, F. l:eRosa, D_ M. Hwang, P. Grabbe.
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